Project description:The inhibitor of kB kinase (IKK) is the master regulator of the nuclear factor kB (NF-kB) pathway, involved in inflammatory, immune and apoptotic responses. In the ‘canonical’ NF-kB pathway, IKK phosphorylates inhibitor of kB (IkB) proteins and this triggers ubiquitin-mediated degradation of IkB, leading to release and nuclear translocation of NF-B transcription factors.
The data presented show that the IKK and IKK subunits recognize a YDDX docking site located within the disordered C-terminal region of IkBa. Our results also suggest that IKK contributes to the docking interaction with higher affinity as compared to IKK.
Project description:The transcription factor NF-kB is an important regulator of genes involved in inflammation and cell proliferation. Several studies previously showed that NF-kB transcription factor was constitutively activated in melanoma cell lines due to the up regulated activity of inhibitor of NF-kB kinases (IKK). In the present study, we tested the activation of NF-kB pathway following TNF stimulation in 9 melanoma cell lines and the subsequent inhibition after the treatment of a small–molecule IKK inhibitor NDB peptide using Secreated Alkaline Phosphate (SEAP) reporter gene assay. The pro-apoptotic effects induced by NBD peptide treatment were determined by flow cytometry as well as by Western Blot testing of PARP’s cleavage. Our findings showed that NBD peptide was able to block IKK-NFKB pathway in all tested cell lines by inducing apoptosis as confirmed by increased levels of active caspase 3 and PARP cleavage after treatment. Moreover, our finding provides the basis for the development of a novel therapeutic approach targeting NF-kB transcription factor to treat melanoma.
Project description:The NF-M-NM-:B pathway is a critical regulator of the immune system and has been implicated in cellular transformation and tumorigenesis. NF-M-NM-:B response is regulated by the activation state of the IM-NM-:B kinase (IKK) complex and triggered by a wide spectrum of stimuli. We previously reported that NF-M-NM-:B is downstream of Notch1 in T cell acute lymphoblastic leukaemia (T-ALL), however both the mechanisms involving Notch1-induced NF-M-NM-:B activation and the potential importance of NF-M-NM-:B in the maintenance of the disease are unknown. Here we visualize Notch-induced NF-M-NM-:B activation using both human T-ALL cell lines and animal models of this type of leukemia. We show that it is not Notch1 itself but Hes1, a canonical Notch target, the responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by a direct transcriptional repression of the deubiquitinating enzyme CYLD, a well-characterized IKK inhibitor. Consistently, CYLD expression is significantly reduced in primary T-ALL leukemias. Finally, we demonstrate that IKK complex inhibition is a promising option for the targeted therapy of T-ALL as suppression of IKK function affected both the survival of human T-ALL cells in vitro and the maintenance of the disease in vivo. Transcriptional consequences of NF-kB inactivation in human T-ALL1 cell line Twenty samples were analyzed: human T-ALL, CEM, KOPT-K, DND41, HPB-ALL cells lines have been treated at 100uM for 16 hours with control peptide or IKKM-NM-3 Nemo binding domain (NBD) inhibitory peptide, that specifically block the canonical NF-M-NM-:B activity by disrupting the interaction of IKKM-NM-3 to IKKM-NM-2 and IKKM-NM-1
Project description:The NF-κB pathway is a critical regulator of the immune system and has been implicated in cellular transformation and tumorigenesis. NF-κB response is regulated by the activation state of the IκB kinase (IKK) complex and triggered by a wide spectrum of stimuli. We previously reported that NF-κB is downstream of Notch1 in T cell acute lymphoblastic leukaemia (T-ALL), however both the mechanisms involving Notch1-induced NF-κB activation and the potential importance of NF-κB in the maintenance of the disease are unknown. Here we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models of this type of leukemia. We show that it is not Notch1 itself but Hes1, a canonical Notch target, the responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by a direct transcriptional repression of the deubiquitinating enzyme CYLD, a well-characterized IKK inhibitor. Consistently, CYLD expression is significantly reduced in primary T-ALL leukemias. Finally, we demonstrate that IKK complex inhibition is a promising option for the targeted therapy of T-ALL as suppression of IKK function affected both the survival of human T-ALL cells in vitro and the maintenance of the disease in vivo. Transcriptional consequences of NF-kB inactivation in human T-ALL1 cell line
Project description:T cell activation following antigen binding to the T cell receptor (TCR) involves the mobilization of intracellular calcium (Ca2+) to activate the key transcription factors NFAT and NF-κB. The mechanism of NFAT activation by Ca2+ has been determined; however, the role of Ca2+ in controlling NF-κB signaling is poorly understood and the source of Ca2+ required for NF-κB activation is unknown. We demonstrate that TCR- but not TNF- induced NF-κB signaling upstream of IκB kinase (IKK) activation absolutely requires the influx of extracellular Ca2+ via STIM1-dependent CRAC/Orai channels. We further show that Ca2+ influx controls phosphorylation of the NF-κB protein p65 on Ser536 and that this post- translational modification controls its nuclear localization and transcriptional activation. Notably our data reveal that this role for Ca2+ is entirely separate from its upstream control of IκBα degradation, thereby identifying a novel Ca2+- dependent distal step in TCR-induced NF-κB activation. Finally, we demonstrate that this control of distal signaling occurs via Ca2+-dependent PKCk-mediated phosphorylation of p65. Thus, we establish the source of Ca2+ required for TCR induced NF-kB activation and we define a new distal Ca2+-dependent checkpoint in TCR-induced NF-kB signaling that has broad implications for the control of immune cell development and T cell functional specificity. 3 treatments were analyzed, with biological replicates for each treatment. In addition, three timepoints (1 hour, 4 hour, and 8 hour) were examined for each treatment, as well as an untreated control. In total 19 samples were analyzed
Project description:The IkB kinase (IKK) is considered to control gene expression primarily through activation of the transcription factor NF-kB. However, we show here that IKK additionally regulates gene expression on post-transcriptional level. IKK interacted with several mRNA binding proteins, including a (P)-body scaffold protein, termed Enhancer of Decapping 4 (EDC4). IKK bound to and phosphorylated EDC4 in a stimulus-sensitive manner, leading to co-recruitment of P-body components, mRNA Decapping Proteins 1a and 2 (DCP1a and DCP2) and to an increase in P-body numbers. Using RNA sequencing, we identified scores of transcripts whose stability was regulated via the IKK-EDC4 axis. Strikingly, in the absence of stimulus IKK-EDC4 promoted destabilization of pro-inflammatory cytokines and regulators of apoptosis. Our findings expand the reach of IKK beyond its canonical role as a regulator of transcription.
Project description:The model was constructed to describe TLR4 induced NF-κB activation in native bone marrow-derived macrophages. It included processes of ligand (lipopolysaccharide) recognition, formation of dimer receptor complex and further signal transduction through TRAF6/TAK1 complex that leads to the activation of IKKα/β kinase, which in turn enables the NF-κB transcription factor phosphorylation and translocation in the cell nucleus, and induction of IkB and WIP1 (as an example of induced protein that promotes NF-κB dephosphorylation 2) gene transcription. Models were based on the current knowledge of TLR signaling framework, protein interactions within the TLR4 pathway, and up-to-date mathematical models describing Toll receptor activation.
The major important additions were made to TLR4 signaling description:
1) Receptor dimerization process
2) The existence of a basal nuclear NF-κB level (translocation)
3) NF-κB phosphorylation by IKK complex
Project description:5-Fuorouracil (5-Fu) remains one of the most effective and most commonly used drugs to treat colorectal cancer. Mucositis is a major complication that occurs in approximately 80% of patients receiving 5-FU and results in abdominal bloating as well as vomiting and diarrhea. oral mucositis (OM) are often very painful and compromise nutrition and oral hygiene as well as increase risk for local and systemic infection.
OM is characterized by an intense inflammatory reaction on the mucosa lamina propria cells, which results in activation of the transcription factor NF-kB. The activation of NF-kB leads to transcription of genes involved in the synthesis of pro-inflammatory cytokines, such as IL-1β, IL-6 and TNF-α. Agents known to attenuate the expression of cytokines have demonstrated efficacy in the prevention of experimental mucositis.
The use of atorvastatin were associated with reduced production of TNF-α and IL-1β and decreased neutrophil infiltration evidenced by histopathological analysis and Myeloperoxidase (MPO) activity. In addition, atorvastatin also reduced oxidative stress and induced an increase in non-protein sulfhydryl groups showing anti-inflammatory and immunomodulatory action.
Project description:IKKbeta is a subunit of the IkB kinase (IKK) complex required for NF-kB activation in response to pro-inflammatory signals. NF-kB regulates the expression of many genes involved in inflammation, immunity and apoptosis, and also controls cell proliferation and differentiation in different tissues; however, its function in skin physiopathology remains controversial. We here report the alterations caused by increased IKKbeta activity in basal cells of the skin of transgenic mice.
Project description:MLL fusion proteins in leukemia induce aberrant transcriptional elongation and associated chromatin perturbations, however the upstream signaling pathways and activators that recruit or retain MLL oncoproteins at initiated promoters are unknown. Through functional and comparative genomic studies, we identified an essential role for NF-kB signaling in MLL leukemia. Suppression of NF-kB led to robust anti-leukemia effects that phenocopied loss of functional MLL oncoprotein or associated epigenetic cofactors. The NF-kB subunit RELA occupies promoter regions of crucial MLL target genes and sustains the MLL-dependent leukemia stem cell program. IKK/NF-kB signaling is required for wild-type MLL and fusion protein retention and maintenance of associated histone modifications providing a molecular rationale for enhanced efficacy in therapeutic targeting of this pathway in MLL leukemias. MV4;11 cells were treated with 1µM IKK inhibitor or vehicle. Each group contains triplicate samples