Genetic architecture of murine skin inflammation and tumor susceptibility
Ontology highlight
ABSTRACT: Gene expression in self-renewing epithelial tissues is controlled by cis- and trans-activating regulatory factors that mediate responses to exogenous agents capable of causing tissue damage, infection, inflammation, or tumorigenesis. We used network construction methods to analyze the genetic architecture of gene expression in normal mouse skin in a cross between tumor-susceptible Mus musculus and tumor-resistant Mus spretus. We demonstrate that gene expression motifs representing different constituent cell types within the skin such as hair follicle cells, haematopoietic cells, and melanocytes are under separate genetic control. Motifs associated with inflammation, epidermal barrier function and proliferation are differentially regulated in mice susceptible or resistant to tumor development. The intestinal stem cell marker Lgr5 is identified as a candidate master regulator of hair follicle gene expression, and the Vitamin D receptor (Vdr) links epidermal barrier function, inflammation, and tumor susceptibility. Keywords: Expression Quantitative Trait Loci A backcross was generated using male Mus spretus and female FVB/N mice; female F1 hybrids were mated with male FVB/N mice. Seventy-one backcross mice (8-12 weeks old) received a single dose of DMBA (25 µg per mouse in 200 µl acetone). Starting one week after the initiation tumors were promoted with TPA (200 µl of 10-4 M solution in acetone) twice weekly for 20 weeks. Initiation and promotion were performed on doral back skin. Normal tail skin was snap frozen when the animals were sacrificed. Tail epidermis from completely untreated Spretus, FVB, and Spretus x FVB F1 mice was also analyzed.
ORGANISM(S): Mus musculus
SUBMITTER: David Quigley
PROVIDER: E-GEOD-12248 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA