Characterization of unique small RNA populations from rice grain
Ontology highlight
ABSTRACT: Small RNAs (~20 to 24 nucleotides) function as naturally occurring molecules critical in developmental pathways in plants and animals. Here we analyze small RNA populations from mature rice grain and seedlings by pyrosequencing. Using a clustering algorithm to locate regions producing small RNAs, we classified hotspots of small RNA generation within the genome. Hotspots here are defined as 1 kb regions within which small RNAs are significantly overproduced relative to the rest of the genome. Hotspots were identified to facilitate characterization of different categories of small RNA regulatory elements. Included in the hotspots, we found known members of 23 miRNA families representing 92 genes, one trans acting siRNA (ta-siRNA) gene, novel siRNA-generating coding genes and phased siRNA generating genes. Interestingly, over 20% of the small RNA population in grain came from a single foldback structure, which generated eight phased 21-nt siRNAs. This is reminiscent of a newly arising miRNA derived from duplication of progenitor genes. Our results provide data identifying distinct populations of small RNAs, including phased small RNAs, in mature grain to facilitate characterization of small regulatory RNA expression in monocot species. In an attempt to gain a broader understanding of gene expression in rice grain, we characterized small RNA populations from Oryza sativa spp. japonica cv. Nipponbare utilizing a deep sequencing approach. Small RNA libraries were constructed from three pools of mature, dormant rice grain and three-week post germination seedlings utilizing RNA-adapter mediated ligation. Each of the four libraries were independently sequenced using high-throughput pyrosequencing. We obtained a total of 679,146 sequences from the three rice grain libraries and 257,394 from one rice seedling library.
ORGANISM(S): Oryza sativa
SUBMITTER: Sara Heisel
PROVIDER: E-GEOD-13152 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA