Transcription profiling of mouse normal thymus, thymus tumor, and XIST resistant thymus tumor
Ontology highlight
ABSTRACT: The non-coding Xist RNA triggers silencing of one of the two female X chromosomes during X inactivation in mammals. Gene silencing by Xist is restricted to special developmental contexts found in cells of the early embryo and specific hematopoietic precursors. The absence of critical silencing factors might explain why Xist cannot silence outside these contexts. Here, we show that Xist can also initiate silencing in a lymphoma model. Using the tumor context we identify the special AT rich binding protein SATB1 as an essential silencing factor. We show that loss of SATB1 in tumor cells abrogates the silencing function of Xist. In normal female lymphocytes Xist localizes along SATB1 filaments and, importantly, forced Xist expression can relocalize SATB1 into the Xist cluster. This reciprocal influence on localization suggests a molecular interaction between Xist and SATB1. SATB1 and its close homologue SATB2 are expressed during the initiation window for X inactivation in embryonic stem cells and are recruited to surround the Xist cluster. Furthermore, ectopic expression SATB1 or SATB2 enables gene silencing by Xist in embryonic fibroblasts, which normally do not provide an initiation context. Thus, SATB1 functions as a crucial initiation factor and may act to organize genes for silencing by Xist during the initiation of X inactivation. Experiment Overall Design: Normal mouse thymus, tumor, and XIST resistant tumor tissue was hybridized on the Affymetrix Mouse430_2 chip. All groups consist of triplicates.
ORGANISM(S): Mus musculus
SUBMITTER: christian haslinger
PROVIDER: E-GEOD-14585 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA