Transcription profiling of human untreated and fenretinide-treated CD34+ cells from 4 CML patients
Ontology highlight
ABSTRACT: Imatinib therapy is first-line treatment for chronic myeloid leukemia (CML), and its failure to target CML progenitor/stem cells may lead to an increased risk of relapse. We report here that fenretinide, a well-tolerated vitamin A derivative, is capable of eradicating primitive CML progenitor/stem cells and significantly enhances the efficacy of imatinib at physiologically achievable concentrations. As tested by colony forming cell assays, formation of various colonies derived primitive CML CD34+ cells was significantly suppressed by fenretinide, particularly with respect to the formation of colonies derived from erythroid progenitors and more primitive CML progenitor/stem cells. Also, fenretinide significantly enhanced the ability of imatinib to suppress the formation of the colonies. Moreover, fenretinide was able to induce apoptosis in primitive CML CD34+ cells while sparing the normal counterparts. In particular, primitive CML CD34+CD38- cells appeared to be most sensitive to fenretinide induced apoptosis. Through transcriptome analysis and molecular validation, we further showed that fenretinide induced apoptosis in CML CD34+ cells was probably mediated by a series of stress responsive events which were likely triggered by elevated levels of intracellular reactive oxygen species. Accordingly, the combination of fenretinide and imatinib may provide a potential solution for overcoming relapse and resistance in CML. Experiment Overall Design: Transcriptome profiles of CML CD34+ cells with and without fenretinide treatment were analyzed using whole genome expression arrays (Affymetrix HG-U133 Plus 2.0) in four CML patients (CML32, CML33, CML34 and CML35, see Table 1). To minimize potential data biases, both treated and untreated cell samples were maintained in culture for 48 hours before hybridization.
ORGANISM(S): Homo sapiens
SUBMITTER: Hai Fang
PROVIDER: E-GEOD-17480 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA