Transcription profiling of mouse erythroid differentiation using Gata1 gene-disrupted G1E ER4 clone cells
Ontology highlight
ABSTRACT: Analysis of erythroid differentiation using Gata1 gene-disrupted G1E ER4 clone cells. Estradiol addition activates an ectopically expressed Gata-1-estrogen receptor fusion protein, triggering synchronous differentiation. 30 hour time course corresponds roughly to late burst-forming unit-erythroid stage (t=0 hrs) through orthochromatic erythroblast stage (t=30 hrs). Experiment Overall Design: G1E ER4 cells cultured in G1E medium were treated at 6 time points with estradiol to initiate erythroid differentiation by activating Gata1 transcription factor and total RNAs from treated cells were extracted for microarray experiment. The erythroid differentiation status was confirmed by cell pellet color and expression of microRNA miR451. The design was similar to an earlier studies (Welch, J. J., Watts, J. A., Vakoc, C. R., Yao, Y., Wang, H., Hardison, R. C., Blobel, G. A., Chodosh, L. A., and Weiss, M. J. (2004)). Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 104, 3136-3147), except that a more recent version of Affymetric chip was used to acheive greater transcriptome coverage.
ORGANISM(S): Mus musculus
SUBMITTER: Ross Hardison
PROVIDER: E-GEOD-18042 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA