Project description:80 bladder tumors of different stages, grades and histologies analyzed on costom made cDNA arrays with 10638 gene elements Keywords: parallel sample
Project description:To comprehensively understand the biological significance behind different grades of bladder cancer, we screened samples of different grades of bladder cancer and glandular cystitis from three patients for single-cell sequencing. In this study, We found that N-Glycan biosynthesis pathway was activated in high-grade bladder cancer while TNF-related pathway was activated in cystitis glandularis. More importantly, We discovered that N-Glycan biosynthesis is a potential target by cell assay and inhibition of this pathway may contribute to the treatment of bladder cancer.
Project description:We present the first computational approach to reconstruct the sequence of copy number alterations driving carcinogenesis from the analysis of several tumor samples of a same patient. Applied to BAC array-CGH and SNP array data from bladder and breast cancers, this method proved highly valuable to establish the clonal relationships between primary tumors and recurrences and to identify the chromosome aberrations at the initiation of tumorigenesis. Keywords: Comparative Genomic Hybridization An algorithm was developed to reconstruct tumors lineage and the sequence of copy number alterations along tumorigenesis from the analysis of several samples from a same patient. The data here consist in CGH data from 58 bladder tumors. 50 of these tumors come from independent samples and were used to compute the frequencies of breakpoints at each location. The 8 other samples (S1_A, S1_B, S2_A, S2_B, S3_A, S3_B, S3_C and S3_D) are multiple tumors from 3 patients. They were used to reconstruct the sequence of chromosome aberrations along cancer development in these 3 patients.
Project description:Background: Muscle-invasive bladder cancer is a common aggressive disease with unmet clinical needs. Recent work established a set of consensus bladder cancer transcriptomic subtypes that distinguishes the cell identity of bladder cancers for improved diagnosis and treatment. However, how these distinct subtypes are regulated remains unclear. Given the link between super-enhancers and the regulation of cell identity, we hypothesized that epigenetic activation of distinct super-enhancers could drive the transcriptional programs of the various bladder cancer subtypes. Results: Through integrated RNA sequencing and epigenomic profiling of histone marks (H3K27ac, H3K27me3, H3K9me3) in a diverse panel of 15 primary bladder tumours, seven bladder cancer cell lines, and two primary cultures from normal human urothelia, we established the first integrated epigenetic map of bladder cancer and demonstrate the link between bladder cancer subtype and epigenetic control. Through H3K27ac analysis, we identify the repertoire of activated super-enhancers in bladder cancer that distinguish molecular subtypes. Building on these findings, we reveal the super-enhancer-regulated networks of candidate master transcription factors for Luminal and Basal bladder cancer subgroups. We find that FOXA1, a key pioneer factor in Luminal bladder cancers identified in our Luminal transcription factor network, binds subgroup-specific bladder super-enhancers and correlates with their activation. Furthermore, CRISPR-Cas9 inactivating mutation of FOXA1 triggers a shift from Luminal to Basal cell identity. This shift is accompanied by an overexpression of ZBED2, one of the newly identified transcriptional regulators in the Basal-specific transcription factor network. 5Finally, we show that both FOXA1 and ZBED2 play concordant roles in preventing inflammatory response in bladder cancer cells through STAT2 inhibition and promote cancer cell survival. Conclusions: Overall, our study provides new data for understanding epigenetic regulation of muscle- invasive bladder cancer and identifies a coregulated network of super-enhancers and associated transcription factors as new potential targets for the treatment of this aggressive disease
Project description:miRNAs are involved in cancer development and progression,acting as tumor suppressors or oncogenes. Half of the human miRNAs are located in cancer-associated genomic regions and can function as tumor suppressor genes or oncogenes depending on their targets miRNA profiling was performed on paired bladder cancer tissues and differentially expressed miRNAs were identified in BC and adjacent noncancerous tissues of any disease stage/grade. Ten paired bladder cancer tissues (5 low-grade non-muscle-invasive bladder cancer[NMIBC] and 5 high-grade muscle-invasive bladder cancer[MIBC]) were sent to CapitalBio Corp. (Beijing) for noncoding RNA microarray analysis. The microarray analysis was done as described on the Web site of CapitalBio. NMIBC samples include 07A, 19A, 23A, 24A and T63 while coresponding pairs include 07B, 19B, 23B, 24B and 63. MIBC samples include 10A, 20A, 21A, 34A and 49A while coresponding pairs include 10B, 20B, 21B, 34B and 49B.
Project description:Genome-wide gene expression profile using deep sequencing technologies can drive the discovery of cancer biomarkers and therapeutic targets. Such efforts are often limited to profiling the expression signature of either mRNA or microRNA (miRNA) in a single type of cancer.Here we provided an integrated analysis of the genome-wide mRNA and miRNA expression profiles of three different genitourinary cancers: carcinomas of the bladder, kidney and testis.Our results highlight the general or cancer-specific roles of several genes and miRNAs that may serve as candidate oncogenes or suppressors of tumor development. Further comparative analyses at the systems level revealed that significant aberrations of the cell adhesion process, p53 signaling, calcium signaling, the ECM-receptor and cell cycle pathways, the DNA repair and replication processes and the immune and inflammatory response processes were the common hallmarks of human cancers. Gene sets showing testicular cancer-specific deregulation patterns were mainly implicated in processes related to male reproductive function, and general disruptions of multiple metabolic pathways and processes related to cell migration were the characteristic molecular events for renal and bladder cancer, respectively. Furthermore, we also demonstrated that tumors with the same histological origins and genes with similar functions tended to group together in a clustering analysis. By assessing the correlation between the expression of each miRNA and its targets, we determined that deregulation of 'key' miRNAs may result in the global aberration of one or more pathways or processes as a whole.This systematic analysis deciphered the molecular phenotypes of three genitourinary cancers and investigated their variations at the miRNA level simultaneously. Our results provided a valuable source for future studies and highlighted some promising genes, miRNAs, pathways and processes that may be useful for diagnostic or therapeutic applications. Examination of mRNA expression of cancer and matched adjacent tissues of 7 testicular germ cell tumors and 10 transitional cell carcinomas of bladder
Project description:The aims of this study were to determine the impact of different levels of RNA degradation as well as to ascertain if the gene expression profiles obtained from bladder washing correlates to that obtained from the related bladder tumor. We obtained tissue tumor and bladder washing tumor samples from the same individual. We degraded each intact RNA to 3 different degradation states with dye swap (2x4x2 arrays). All tumor RNAs were compared against a pool of 4 healthy control samples with intact RNA (named as C0).
Project description:We present the first computational approach to reconstruct the sequence of copy number alterations driving carcinogenesis from the analysis of several tumor samples of a same patient. Applied to BAC array-CGH and SNP array data from bladder and breast cancers, this method proved highly valuable to establish the clonal relationships between primary tumors and recurrences and to identify the chromosome aberrations at the initiation of tumorigenesis. An algorithm was developed to reconstruct tumors lineage and the sequence of copy number alterations along tumorigenesis from the analysis of several samples from a same patient. The data here consist in Illumina SNP data from 20 bladder tumors. 15 of these tumors (REF1 to REF15) come from independent samples and were used to compute the frequencies of breakpoints at each location. The 5 other samples (S4_A, S4_B, S5_A, S5_B, and S5_C) are multiple tumors from 2 patients. They were used to reconstruct the sequence of chromosome aberrations along cancer development in these 2 patients.
Project description:The bladder’s remarkable regenerative capacity in response to injury had been thought to reside exclusively in its basal and intermediate cells. While examining consequences of DNA methyltransferase 1 (Dnmt1) inactivation in mouse embryonic bladder epithelium, we made the surprising discovery that Wolffian duct epithelial cells also support bladder regeneration. Conditional inactivation of Dnmt1 in mouse urethral and bladder epithelium triggered widespread apoptosis, depleted basal and intermediate bladder cells and disrupted Uroplakin protein expression. These events coincided with recruitment of Wolffian duct epithelial cells into Dnmt1 mutant urethra and bladder where they were reprogrammed to express bladder markers including FOXA1, Keratin 5, P63 and Uroplakin. This is the first evidence that Wolffian duct epithelial cells can be summoned in vivo to replace damaged bladder epithelium and function as a cell reservoir for bladder regeneration.