Comparative genomic hybridization of BRCAX breast tumors
Ontology highlight
ABSTRACT: Only about 25% of familial breast cancer is explained by mutations in BRCA1 and BRCA2, fewer by moderate penetrance genes like P53, PTEN, CHEK2, ATM and PALB2 and an unknown fraction by common variants of genes with low penetrance. Evidence suggests that additional dominant breast cancer genes exist and these are referred to as BRCAX. Clinical presentation of families with highly increased incidence of breast cancer that are non-BRCA1/BRCA2, suggests dominant inheritance of such high penetrance breast cancer genes. Because cancer genes often confer a specific clinical presentation (e.g. age of onset, sex-ratio, tissue spectrum) it seems useful to initiate their discovery by such clinical criteria. An earlier linkage study of BRCAX / non-BRCA1/2 breast cancer families aimed to enrich for a common genetic defect by setting stringent inclusion criteria, failed to identify new breast cancer susceptibility loci. Motivated by results of BRCA1 and BRCA2 breast tumors that have characteristic genomic signatures (array-CGH 'phenotypes'), we present the largest dataset to date showing the genomic profiles of 58 BRCAX primary breast tumors by array-CGH and show by unsupervised hierarchical clustering that they form a heterogeneous group with 4 distinct subtypes that are different from (n = 48) sporadic controls. This provides a possible explanation for the lack of high LOD scores in linkage studies. The presence of more than one BRCAX sub-type suggests the existence of more than one BRCAX gene. We propose approaches that can be employed to stratify BRCAX families based on array-CGH data. 58 primary breast carcinomas from non-BRCA1/2 hereditary breast cancer families (HBC) compared to 48 sporadic tumors
ORGANISM(S): Homo sapiens
SUBMITTER: Petra Nederlof
PROVIDER: E-GEOD-18626 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA