ABSTRACT: While new defects in BRCA1 are still being found, it is unclear whether current breast cancer diagnostics misses many BRCA1-associated cases. A reliable test that is able to indicate the involvement of BRCA1 deficiency in cancer genesis could support decision making in genetic counselling and clinical management. To find BRCA1-specific markers and explore the effectiveness of the current diagnostic strategy, we designed a classification method, validated it and examined whether we could find BRCA1-like breast tumours in a group of patients initially diagnosed as non-BRCA1/2 mutation carriers. A classifier was built based on array-CGH profiles of 18 BRCA1-related and 32 control breast tumours, and validated on independent sets of 16 BRCA1-related and 16 control breast carcinomas. Subsequently, we applied the classifier to 48 breast tumours of patients from Hereditary Breast and Ovarian Cancer (HBOC) families in whom no germ line BRCA1/BRCA2 mutations were identified. The classifier showed an accuracy of 91% when applied to the validation sets. In 48 non-BRCA1/2 patients, only two breast tumours presented a BRCA1-like CGH profile. Additional evidence for BRCA1 dysfunction was found in one of these tumours. We here describe the specific chromosomal aberrations in BRCA1-related breast carcinomas. We developed a predictive genetic test for BRCA1-association and show that BRCA1-related tumours can still be identified in HBOC families after routine DNA diagnostics.
Project description:89 tumors from women that were eligible for, and subjected to, routine diagnostic testing according to the HBOC criteria but were negative for pathogenic BRCA1/2-mutations or carried an UV in either BRCA1/2 A BRCA2-classifier was built using array-CGH profiles of 28 BRCA2-mutated and 28 sporadic breast tumors. The classifier was validated on an independent group of 19 BRCA2-mutated and 19 sporadic breast tumors. Subsequently, we tested 89 breast tumors from suspected hereditary breast (and ovarian) cancer (HBOC) families, in which either no BRCA1/2 mutation or an UV had been found by routine diagnostics.
Project description:Only about 25% of familial breast cancer is explained by mutations in BRCA1 and BRCA2, fewer by moderate penetrance genes like P53, PTEN, CHEK2, ATM and PALB2 and an unknown fraction by common variants of genes with low penetrance. Evidence suggests that additional dominant breast cancer genes exist and these are referred to as BRCAX. Clinical presentation of families with highly increased incidence of breast cancer that are non-BRCA1/BRCA2, suggests dominant inheritance of such high penetrance breast cancer genes. Because cancer genes often confer a specific clinical presentation (e.g. age of onset, sex-ratio, tissue spectrum) it seems useful to initiate their discovery by such clinical criteria. An earlier linkage study of BRCAX / non-BRCA1/2 breast cancer families aimed to enrich for a common genetic defect by setting stringent inclusion criteria, failed to identify new breast cancer susceptibility loci. Motivated by results of BRCA1 and BRCA2 breast tumors that have characteristic genomic signatures (array-CGH 'phenotypes'), we present the largest dataset to date showing the genomic profiles of 58 BRCAX primary breast tumors by array-CGH and show by unsupervised hierarchical clustering that they form a heterogeneous group with 4 distinct subtypes that are different from (n = 48) sporadic controls. This provides a possible explanation for the lack of high LOD scores in linkage studies. The presence of more than one BRCAX sub-type suggests the existence of more than one BRCAX gene. We propose approaches that can be employed to stratify BRCAX families based on array-CGH data. 58 primary breast carcinomas from non-BRCA1/2 hereditary breast cancer families (HBC) compared to 48 sporadic tumors
Project description:The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across 485,577 CpGs . Samples were restored FFPE DNA extracted from breast tumours in 3 groups; BRCA1 germline mutated tumours (BRCA1), BRCA1 germline wildtype tumours from women from high risk families (BRCAx) and the designated test variant tumours (BRCA1UV).
Project description:Only about 25% of familial breast cancer is explained by mutations in BRCA1 and BRCA2, fewer by moderate penetrance genes like P53, PTEN, CHEK2, ATM and PALB2 and an unknown fraction by common variants of genes with low penetrance. Evidence suggests that additional dominant breast cancer genes exist and these are referred to as BRCAX. Clinical presentation of families with highly increased incidence of breast cancer that are non-BRCA1/BRCA2, suggests dominant inheritance of such high penetrance breast cancer genes. Because cancer genes often confer a specific clinical presentation (e.g. age of onset, sex-ratio, tissue spectrum) it seems useful to initiate their discovery by such clinical criteria. An earlier linkage study of BRCAX / non-BRCA1/2 breast cancer families aimed to enrich for a common genetic defect by setting stringent inclusion criteria, failed to identify new breast cancer susceptibility loci. Motivated by results of BRCA1 and BRCA2 breast tumors that have characteristic genomic signatures (array-CGH 'phenotypes'), we present the largest dataset to date showing the genomic profiles of 58 BRCAX primary breast tumors by array-CGH and show by unsupervised hierarchical clustering that they form a heterogeneous group with 4 distinct subtypes that are different from (n = 48) sporadic controls. This provides a possible explanation for the lack of high LOD scores in linkage studies. The presence of more than one BRCAX sub-type suggests the existence of more than one BRCAX gene. We propose approaches that can be employed to stratify BRCAX families based on array-CGH data.
Project description:The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across 485,577 CpGs . Samples were restored FFPE DNA extracted from breast tumours in 3 groups; BRCA1 germline mutated tumours (BRCA1), BRCA1 germline wildtype tumours from women from high risk families (BRCAx) and the designated test variant tumours (BRCA1UV). Bisulphite converted DNA was hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:The aim of the experiment was to analyse gene expression profiles in Brca1 tumours arising from different mammary epithelial cell populations use a Cre-loxP based conditional knockout system. K14 promoter driving Cre expression caused Brca1 knockout in basal stem cells and thus stem cell origin tumours whereas Blg promoter driving Cre expression caused Brca1 knockout in luminal progenitor cells and thus progenitor origin tumours. Individual arrays were carried out on labelled cDNA made from RNA isolated from mouse mammary tumours. Only cDNA passing Almac diagnostics QC criteria were hybridised to arrays. Only arrays passing QC criteria after hybrisiation were subsequently analysed.
Project description:Genomic DNA from sporadic breast tumours was isolated and analysed using array CGH. The NKI 1MB BAC/PAC micro array was used to identify chromosomal aberrations of all tumours. Keywords: sporadic breast tumour, CGH
Project description:In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar pathophysiological mechanisms. Grouping into molecularly homogeneous subsets may therefore be of potential value for further genetic analysis in order to identify new high penetrance breast cancer genes. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family. By analyzing a collection of 70 breast tumor biopsies from 58 families, we show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Our finding indicates involvement of hereditary factors in these families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found. This is the first study to provide a biological link between breast cancers from family members of high risk non-BRCA1/2 families in a systematic manner, suggesting that future genetic analysis may benefit from subgrouping families into molecularly homogeneous subtypes in order to identify new high penetrance susceptibility genes.
Project description:In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar pathophysiological mechanisms. Grouping into molecularly homogeneous subsets may therefore be of potential value for further genetic analysis in order to identify new high penetrance breast cancer genes. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family. By analyzing a collection of 70 breast tumor biopsies from 58 families, we show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Our finding indicates involvement of hereditary factors in these families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found. This is the first study to provide a biological link between breast cancers from family members of high risk non-BRCA1/2 families in a systematic manner, suggesting that future genetic analysis may benefit from subgrouping families into molecularly homogeneous subtypes in order to identify new high penetrance susceptibility genes. Gene expression profiling of 253 breast tumor samples. Breast tumor tissue from 125 patients with germline mutations in BRCA1 (n = 33) or BRCA2 (n = 22) or with no detectable germline mutation in BRCA1 or BRCA2 (n = 70) were included in the study. Serving as a representative control group, primary breast tumor samples (n = 128) were randomly selected among available samples originating from the same department and time period as for the hereditary samples. The study was conducted using Agilent-029949 Custom SurePrint G3 Human GE 8x60K Microarray platform.