Identification of genes differentially regulated upon infection of Thp-1 cells with H37Rv
Ontology highlight
ABSTRACT: Perturbation of host physiology by intracellular Mycobacterium tuberculosis (H37Rv) can be reflected by changes in gene expression pattern of host genes. Total RNA was isolated from PMA differentiated uninfected cells or cells infected with H37Rv for 16, 48 or 90 hours and gene expression profile was obtained. There are in all 8 samples, two replcates of each 4. Two samples, namely 1D,1E (replicates of one) are control (PMA differentiated Thp-1 cells Uninfected controls). Cells were infected with H37Rv at an MOI of 1:10 and samples were collected at 16 hours, 48 hours and 90 hours post-infection.
Project description:The samples was divided in to three groups including the T cells extracted from the tumor infiltrating lymphocytes and from the paired peripheral blood bymphocyte of 3 patients sufferring from hepatocellular carcinoma as well as the peripheral blood bymphocyte of three healthy controls. The total RNA was extracted for the detection of human lncRNA expression level.
Project description:The periodontal ligament (PDL) is one of the connective tissues located between the tooth and bone. It is characterized by rapid turnover. Periodontal ligament fibroblasts (PDLFs) play major roles in the rapid turnover of the PDL. Microarray analysis of human PDLFs (HPDLFs) and human dermal fibroblasts (HDFs) revealed markedly high expression of chemokine (CXC motif) ligand 12 (CXCL12) in the HPDLFs, which plays an important role in the migration of mesenchymal stem cells (MSCs). The function of CXCL12 in the periodontal ligament was investigated in HPDLFs. CXCL12 in HPDLFs and HDFs was examined by microarray, RT-PCR, qRT-PCR and ELISA. It was also immunohistochemically examined in the PDL in vivo. Chemotactic ability of CXCL12 was evaluated both in PDLFs and HDFs with migration assay of MSCs. The expression of CXCL12 in the HPDLFs was much higher than that in HDFs in vitro. CXCL12 was localized in fibroblasts and extracellular matrix in the PDL in rats. Migration assay demonstrated that the number of migrated MSCs by HPDLFs was significantly higher than that by HDFs. In addition, the migrated MSCs also expressed CXCL12 and several genes that are familiar to fibroblasts. The results suggested that PDLFs are able to synthesize and secrete CXCL12 protein, and that CXCL12 induces migration of MSCs in the PDL in order to maintain rapid turnover of the PDL. The objective of this study was to investigate the function of CXCL12 in the PDL with rapid turnover.Microarray analysis was performed using a Whole Human Genome 8x60K (Agilent Technologies, Tokyo, Japan) containing approximately 44,000 transcripts. According to the manufacturerM-bM-^@M-^Ys protocol, total RNAs from HPDLFs and HDFs were labeled with Cy3 and hybridized on the microarray. The hybridization data for HPDLFs were compared with data for HDFs.
Project description:Microarray analysis is a technique that can be employed to provide expression profiles of single genes and a new insight to elucidate the biological mechanisms responsible for fruit development. To evaluate expression of genes mostly engaged in fruit development between P. mume and P. armeniaca, we first identified differentially expressed transcripts along the entire fruit life cycle by using microarrays spotted with 10,641 ESTs collected from P. mume and other Prunus EST sequences. A total of 1,418 ESTs were selected after quality control of microarray spots and analyzed for differential gene expression patterns during fruit development of P. mume and P. armeniaca. Among them, 707 up-regulated and 711 down-regulated differentially expressed genes showing more than 2.0-fold differences in expression level were annotated by GO based on biological processes, molecular functions and cellular components. These differentially expressed genes were found to be involved in several important pathways of carbohydrate metabolism, galactose metabolism, starch and sucrose metabolism, and biosynthesis of other secondary metabolites via KEGG, which could provide detailed information on the fruit quality differences during development and ripening. With the obtained results, we provide a practical database for comprehensive understanding of molecular events during fruit development and also lay the theoretical foundation for the cloning of genes involved in a series of important rate-limiting enzymes in the vital metabolic pathways during the fruit development. Fruits from 4 cultivar at different stages, replicated 2 times
Project description:Arraystar Human circRNA Microarray is designed for the global profiling of human circRNAs. In this study, we applied a circRNA microarray to screen the potential biomarker for HCC. 20 samples extracted from plasma samples including HCC group before operation, and after operation, CH group and control group. Each group contained five samples.
Project description:Goal of the study is to characterize distinct function(s) of two cytosolic glutamine synthetase (GS) in rice plants. We grew rice lacking GS1;1 and GS1;2 under the ammonium sufficient condition. We harvested roots from the two mutants as well as those of the corresponding control.
Project description:Chemoresistance is a major cause of poor prognosis of breast cancer.More and more mRNAs and lncRNAs are reported to upregulate chemoresistance in breast cancer.To explore the how mRNAs and lncRNAs involved in chemoresistance of breast cancer,we sceened upregulated mRNAs and lncRNA from parental MCF-7 , chemoresistant MCF-7 cells as well as 4 breast cancer tissue sensitive to chemotherapy and 4 resistant to chemotherapy . Total RNA was extracted using Trizol reagent. Agilent Human lncRNA Microarray V6 (4*180K) was used to analyze the global profiling of human lncRNAs and protein-coding transcripts in these samples. The microarray contains 83,835 lncRNAs and 27,233 coding genes.
Project description:To characterize plant heat shock-responsive genes and to identify identified genes that are regulated by of HSFs underheat shock conditions, transcriptome analysis of rice was conducted using microarray. Arabidopsis plants were grown in plastic pots filled with peat moss for 3 weeks (principal growth stage 1.07â1.08) under a 16 h light/8 h dark photoperiod (50 ± 10 μmol photons mâ2 sâ1) at 22°C, and were treated for 30 min at 37°C.
Project description:BACKGROUND: Nitrogen is an essential element for bacterial growth and an important component of biological macromolecules. Consequently, responding to nitrogen limitation is critical for bacterial survival and involves the interplay of signalling pathways and transcriptional regulation of nitrogen assimilation and scavenging genes. In the soil dwelling saprophyte Mycobacterium smegmatis the OmpR-type response regulator GlnR is thought to mediate the transcriptomic response to nitrogen limitation. However, to date only ten genes have been shown to be in the GlnR regulon, a vastly reduced number compared to other organisms. RESULTS: We investigated the role of GlnR in the nitrogen limitation response and determined the entire GlnR regulon, by combining expression profiling of M. smegmatis wild type and glnR deletion mutant, with GlnR-specific chromatin immunoprecipitation and high throughput sequencing. We identify 53 GlnR binding sites during nitrogen limitation that control the expression of over 100 genes, demonstrating that GlnR is the regulator controlling the assimilation and utilisation of nitrogen. We also determine a consensus GlnR binding motif and identify key residues within the motif that are required for specific GlnR binding. CONCLUSIONS: We have demonstrated that GlnR is the global nitrogen response regulator in M. smegmatis, directly regulating the expression of more than 100 genes. GlnR controls key nitrogen stress survival processes including primary nitrogen metabolism pathways, the ability to utilise nitrate and urea as alternative nitrogen sources, and the potential to use cellular components to provide a source of ammonium. These studies further our understanding of how mycobacteria survive nutrient limiting conditions. [Data is also available from http://bugs.sgul.ac.uk/E-BUGS-143]