Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans: fluoranthene
Ontology highlight
ABSTRACT: Physiologically based modelling using DEBtox (dynamic energy budget in toxicology) and transcriptional profiling were used in Caenorhabditis elegans to identify how physiological modes of action, as indicated by effects on system level resource allocation were associated with changes in gene expression following exposure to fluoranthene (FA). DEBtox modelling showed an effect of FA on costs for growth and reproduction (i.e. for production of new and differentiated biomass). The microarray analysis supported this effect, showing an effect of FA on protein integrity and turnover that would be expected to have consequences for rates of somatic growth. Our results have established that outputs from process based models and transcriptomics analyses can help to link mechanisms of action of toxic chemicals with resulting demographic effects. Such complimentary analyses can assist in the categorisation of chemicals for risk assessment purposes. Adults of C. elegans strain GE-31 were exposed as biological replicate groups (approx 10,000) to a control and 4 concentrations of fluoranthene from L1 stage. Replicate populations were sampled 12 hours after the on-set of egg laying and hybridised against a common oligonucleotide reference for purposes of normalisation. All experiments were conducted following a reference design with the reference sample compiled from a mixture of RNA extracted from control and cadmium-, fluoranthene-, atrazine- and copper-exposed worms from L1, L4 and adult life-stages. Use of this reference was intended to provide optimal coverage of the spotted genes.
ORGANISM(S): Caenorhabditis elegans
SUBMITTER: Martijs Jonker
PROVIDER: E-GEOD-21011 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA