The Leukemia-associated Mllt10/Af10- Dot1l, dedicated b-catenin coactivators essential for intestinal homeostasis
Ontology highlight
ABSTRACT: Background: Wnt signaling maintains the undifferentiated state of intestinal crypt progenitor cells by inducing the formation of nuclear TCF4/beta-catenin complexes. In colorectal cancer, activating mutations in Wnt pathway components cause inappropriate activation of TCF4/beta-catenin -driven transcription. Despite the passage of a decade after the discovery of TCF4 and beta-catenin as the molecular effectors of the Wnt signal, few transcriptional activators essential and unique to the regulation of this transcription program have been found. Methodology/Principal Findings: Using proteomics, we identified the leukemia-associated Mllt10/Af10 and the methyltransferase Dot1l, as Tcf4/beta-catenin interactors in mouse small intestinal crypts. Mllt10/Af10-Dot1l, essential for transcription elongation, are recruited to Wnt target genes in a beta-catenin -dependent manner, resulting in H3K79 methylation over their coding regions in vivo in proliferative crypts of mouse small intestine, in colorectal cancer and Wnt-inducible HEK293T cells. Depletion of MLLT10/AF10 in colorectal cancer and Wnt-inducible HEK293T cells followed by expression array analysis identifies MLLT10/AF10 and DOT1L as essential activators dedicated to Wnt target gene regulation. In contrast, previously published b-catenin coactivators p300 and beta-catenin displayed a more pleiotropic target gene expression profile controlling Wnt and other pathways. tcf4, mllt10/af10 and dot1l are co-expressed in Wnt-driven tissues in zebrafish and essential for Wnt-reporter activity. Intestinal differentiation defects in apc-mutant zebrafish can be rescued by depletion of Mllt10 and Dot1l, establishing these genes as activators downstream of Apc in Wnt target gene activation in vivo. Morpholino-depletion of mllt10/af10-dot1l in zebrafish results in defects in intestinal homeostasis and a significant reduction in the in vivo expression of direct Wnt target genes and in the number of proliferative intestinal epithelial cells. Conclusions/Significance: We conclude that Mllt10/Af10-Dot1l are essential, dedicated activators of Wnt-dependent transcription, critical for maintenance of intestinal proliferation and homeostasis. The methyltransferase Dot1l may present an attractive candidate for drug targeting in colorectal cancer. 6 samples for Ls174T cells: si-b-catenin against si-control and dyeswap of it, si-control, si-MLLT10, si-BRG1 and si-P300 are hybridized against common reference RNA; 6 samples of HEK293T cells: Wnt3A or control medium (CM) induction for 9 hours, si-MLLT10, si-DOT1L, si-BRG1 and si-P300 upon 9 hour Wnt3A induction are all hybridized against common reference RNA
ORGANISM(S): Homo sapiens
SUBMITTER: Vivian Li
PROVIDER: E-GEOD-21367 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA