Project description:Background: Wnt signaling maintains the undifferentiated state of intestinal crypt progenitor cells by inducing the formation of nuclear TCF4/beta-catenin complexes. In colorectal cancer, activating mutations in Wnt pathway components cause inappropriate activation of TCF4/beta-catenin -driven transcription. Despite the passage of a decade after the discovery of TCF4 and beta-catenin as the molecular effectors of the Wnt signal, few transcriptional activators essential and unique to the regulation of this transcription program have been found. Methodology/Principal Findings: Using proteomics, we identified the leukemia-associated Mllt10/Af10 and the methyltransferase Dot1l, as Tcf4/beta-catenin interactors in mouse small intestinal crypts. Mllt10/Af10-Dot1l, essential for transcription elongation, are recruited to Wnt target genes in a beta-catenin -dependent manner, resulting in H3K79 methylation over their coding regions in vivo in proliferative crypts of mouse small intestine, in colorectal cancer and Wnt-inducible HEK293T cells. Depletion of MLLT10/AF10 in colorectal cancer and Wnt-inducible HEK293T cells followed by expression array analysis identifies MLLT10/AF10 and DOT1L as essential activators dedicated to Wnt target gene regulation. In contrast, previously published b-catenin coactivators p300 and beta-catenin displayed a more pleiotropic target gene expression profile controlling Wnt and other pathways. tcf4, mllt10/af10 and dot1l are co-expressed in Wnt-driven tissues in zebrafish and essential for Wnt-reporter activity. Intestinal differentiation defects in apc-mutant zebrafish can be rescued by depletion of Mllt10 and Dot1l, establishing these genes as activators downstream of Apc in Wnt target gene activation in vivo. Morpholino-depletion of mllt10/af10-dot1l in zebrafish results in defects in intestinal homeostasis and a significant reduction in the in vivo expression of direct Wnt target genes and in the number of proliferative intestinal epithelial cells. Conclusions/Significance: We conclude that Mllt10/Af10-Dot1l are essential, dedicated activators of Wnt-dependent transcription, critical for maintenance of intestinal proliferation and homeostasis. The methyltransferase Dot1l may present an attractive candidate for drug targeting in colorectal cancer. 6 samples for Ls174T cells: si-b-catenin against si-control and dyeswap of it, si-control, si-MLLT10, si-BRG1 and si-P300 are hybridized against common reference RNA; 6 samples of HEK293T cells: Wnt3A or control medium (CM) induction for 9 hours, si-MLLT10, si-DOT1L, si-BRG1 and si-P300 upon 9 hour Wnt3A induction are all hybridized against common reference RNA
Project description:Background: Wnt signaling maintains the undifferentiated state of intestinal crypt progenitor cells by inducing the formation of nuclear TCF4/beta-catenin complexes. In colorectal cancer, activating mutations in Wnt pathway components cause inappropriate activation of TCF4/beta-catenin-driven transcription. Despite the passage of a decade after the discovery of TCF4 and beta-catenin as the molecular effectors of the Wnt signal, few transcriptional activators essential and unique to the regulation of this transcription program have been found. Methodology/Principal Findings: Using proteomics, we identified the leukemia-associated Mllt10/Af10 and the methyltransferase Dot1l, as Tcf4/beta-catenin interactors in mouse small intestinal crypts. Mllt10/Af10-Dot1l, essential for transcription elongation, are recruited to Wnt target genes in a beta-catenin -dependent manner, resulting in H3K79 methylation over their coding regions in vivo in proliferative crypts of mouse small intestine, in colorectal cancer and Wnt-inducible HEK293T cells. Depletion of MLLT10/AF10 in colorectal cancer and Wnt-inducible HEK293T cells followed by expression array analysis identifies MLLT10/AF10 and DOT1L as essential activators dedicated to Wnt target gene regulation. In contrast, previously published b-catenin coactivators p300 and beta-catenin displayed a more pleiotropic target gene expression profile controlling Wnt and other pathways. tcf4, mllt10/af10 and dot1l are co-expressed in Wnt-driven tissues in zebrafish and essential for Wnt-reporter activity. Intestinal differentiation defects in apc-mutant zebrafish can be rescued by depletion of Mllt10 and Dot1l, establishing these genes as activators downstream of Apc in Wnt target gene activation in vivo. Morpholino-depletion of mllt10/af10-dot1l in zebrafish results in defects in intestinal homeostasis and a significant reduction in the in vivo expression of direct Wnt target genes and in the number of proliferative intestinal epithelial cells. Conclusions/Significance: We conclude that Mllt10/Af10-Dot1l are essential, dedicated activators of Wnt-dependent transcription, critical for maintenance of intestinal proliferation and homeostasis. The methyltransferase Dot1l may present an attractive candidate for drug targeting in colorectal cancer.
Project description:AF10 is a cofactor of the H3K79 methyltransferase DOT1L. To uncover the role of H3K79me in reprogramming to induced pluripotent stem cells (iPSCs), we bred reprogrammable mice encoding doxycycline inducible Oct4-2A-Klf4-2A-IRES-Sox2-2A-c-Myc (OKSM) transgene with conditional flox (fl)-AF10 (Mllt10). We isolated mouse embryonic fibroblasts (MEFs), deleted AF10 with CRE-recombinase or treated cells with empty vector control, and initiated reprogramming in DOT1L chemical inhibitor SGC0946 or DMSO control. Gene expression was assessed using RNA-Seq and genome wide localization of H3K79me1 and H3K79me2 was determined by ChIP-Seq on day 4 of reprogramming.
Project description:Epigenetic regulators have important roles during embryonic development as well as somatic cell reprogramming. We previously showed that inhibition of DOT1L, the histone H3 lysine 79 methyltransferase, increases the efficiency of reprogramming via regulation of lineage specific genes. However, the role of DOT1L-interacting proteins in reprogramming remains unknown. In this study, DOT1L interactors were identified using the BioID method in which a promiscuous BirA ligase (BirA*) was employed to biotinylate DOT1L-proximal proteins. The resulting interaction candidates were investigated for their effects on reprogramming. Candidate genes were knocked-down in human fibroblasts via shRNAs followed by reprogramming. Our results indicated that knock-down of AF10 (MLLT10), significantly increased the iPSC generation efficiency, suggesting that it acts as a barrier to reprogramming similar to DOT1L. This finding was verified by CRISPR/Cas9 mediated knockout of AF10. Overexpression of AF10 reversed the effect of AF10 knockout and decreased reprogramming efficiency. To determine how AF10 silencing changes the gene expression, RNA-sequencing was performed on human fibroblasts undergoing reprogramming. AF10 suppression resulted in downregulation of fibroblast-specific genes and accelerated the activation of pluripotency-related genes. Our analysis also demonstrated that silencing of AF10 results in gene expression changes similar to DOT1L inhibition during reprogramming. Taken together, this study uncovered AF10 as a novel barrier to reprogramming and contributed to our understanding of epigenetic mechanisms that maintain cell identity.
Project description:AF10 is a cofactor of the H3K79 methyltransferase DOT1L. To uncover the role of H3K79me in reprogramming to induced pluripotent stem cells (iPSCs), we bred reprogrammable mice encoding doxycycline inducible Oct4-2A-Klf4-2A-IRES-Sox2-2A-c-Myc (OKSM) transgene with conditional flox (fl)-AF10 (Mllt10). We isolated mouse embryonic fibroblasts (MEFs), deleted AF10 with CRE-recombinase or treated cells with empty vector control, and initiated reprogramming in DOT1L chemical inhibitor SGC0946 or DMSO control. Gene expression was assessed using RNA-Seq and genome wide localization of H3K79me1, H3K79me2, and RNA Polymerase II (RNAPII) was determined by ChIP-Seq on day 4 of reprogramming.
Project description:Aberrant Hox gene activation is a recurrent feature in several different types of human leukemia, including leukemias with rearrangements of the mixed lineage leukemia (MLL) gene. In this study, we demonstrate that Hox gene expression is controlled by higher degree H3K79 methylation in acute myeloid leukemia (AML). We show that the deposition of progressive H3K79 methylation states at the genomic loci of critical Hox genes is dependent on the interaction of the H3K79 methyltransferase Dot1l with Af10, a protein that is found in the Dot1l complex isolated from diverse cell types. Furthermore, abrogation of the Dot1l-Af10 interaction reverses aberrant epigenetic profiles found in the leukemia epigenome and impairs the transforming ability of mechanistically distinct AML oncogenes. Primary MLL-AF9 leukemias in the AF10 floxed background (homozygous) were transduced with MSCV-IRES-tdTomato (MIT) or the Cre recombinase expressing MIT vector, cells were sorted and injected into secondary recipient mice to generate Af10 floxed (MIT) or deleted (CRE) leukemias. BM cells fresly harvested from these leukemias were sorted for tdTomato expression and used for microarrays. BM cells from Hoxa9-Meis1 transduced primary leukemias were used for comparison.
Project description:We wanted to investigate the effects of Dot1l deletion on gene expression in LSKs and GMPs of C57/BL6 mice Aberrant Hox gene activation is a recurrent feature in several different types of human leukemia, including leukemias with rearrangements of the mixed lineage leukemia (MLL) gene. In this study, we demonstrate that Hox gene expression is controlled by higher degree H3K79 methylation in acute myeloid leukemia (AML). We show that the deposition of progressive H3K79 methylation states at the genomic loci of critical Hox genes is dependent on the interaction of the H3K79 methyltransferase Dot1l with Af10, a protein that is found in the Dot1l complex isolated from diverse cell types. Furthermore, abrogation of the Dot1l-Af10 interaction reverses aberrant epigenetic profiles found in the leukemia epigenome and impairs the transforming ability of mechanistically distinct AML oncogenes. Lineage negative Sca-1 positive Kit positive (LSK) cells and granulocyte macrophage progenitors (GMPs) were sorted from Dot1 wt/wt x Mx-Cre mice or Dot1l fl/fl x Mx-Cre mice were injected with PIPC. PIPC injection induced biallelic deletion of the Dot1l allele in the Dot1l fl/fl mice but not the Dot1l wt/wt mice. The Dot1l wt/wt LSKs and GMPs were compared to the Dot1l -/- counterparts by RNA extraction and Microarrays.
Project description:Aberrant Hox gene activation is a recurrent feature in several different types of human leukemia, including leukemias with rearrangements of the mixed lineage leukemia (MLL) gene. In this study, we demonstrate that Hox gene expression is controlled by higher degree H3K79 methylation in acute myeloid leukemia (AML). We show that the deposition of progressive H3K79 methylation states at the genomic loci of critical Hox genes is dependent on the interaction of the H3K79 methyltransferase Dot1l with Af10, a protein that is found in the Dot1l complex isolated from diverse cell types. Furthermore, abrogation of the Dot1l-Af10 interaction reverses aberrant epigenetic profiles found in the leukemia epigenome and impairs the transforming ability of mechanistically distinct AML oncogenes.
Project description:We wanted to investigate the effects of Dot1l deletion on gene expression in LSKs and GMPs of C57/BL6 mice Aberrant Hox gene activation is a recurrent feature in several different types of human leukemia, including leukemias with rearrangements of the mixed lineage leukemia (MLL) gene. In this study, we demonstrate that Hox gene expression is controlled by higher degree H3K79 methylation in acute myeloid leukemia (AML). We show that the deposition of progressive H3K79 methylation states at the genomic loci of critical Hox genes is dependent on the interaction of the H3K79 methyltransferase Dot1l with Af10, a protein that is found in the Dot1l complex isolated from diverse cell types. Furthermore, abrogation of the Dot1l-Af10 interaction reverses aberrant epigenetic profiles found in the leukemia epigenome and impairs the transforming ability of mechanistically distinct AML oncogenes.
Project description:Methylation of H3K79 is associated with chromatin at expressed genes, though it is unclear if this histone modification is required for transcription of all genes. Recent studies suggest that Wnt-responsive genes depend particularly on H3K79 methylation, which is catalyzed by the methyltransferase DOT1L. Human leukemias carrying MLL gene rearrangements show DOT1L-mediated H3K79 methylation and aberrant expression of leukemogenic genes. DOT1L inhibitors reverse these effects but their clinical use is potentially limited by toxicity in Wnt-dependent tissues such as intestinal epithelium. Genome-wide positioning of the H3K79me2 mark in Lgr5+ mouse intestinal stem cells and mature intestinal villus epithelium correlated with mRNA expression levels but not with Wnt-responsive genes per se. Selective Dot1l disruption in Lgr5+ stem cells or in all intestinal epithelial cells eliminated H3K79me2 from the respective compartments, allowing genetic evaluation of DOT1L requirements. Absence of methylated H3K79 did not impair health, intestinal homeostasis or expression of Wnt target genes in crypt epithelium for up to 4 months, despite increased crypt cell apoptosis. Global transcript profiles in Dot1l-null cells were barely altered. Thus, H3K79 methylation is not essential for transcription of Wnt-responsive or other intestinal genes and intestinal toxicity is not imperative when DOT1L is rendered inactive in vivo. Examination of differential gene expression between Dot1l control (Dot1 f/f) and Dot1l mutant (Villin-Cre, Dot1l f/f) villus cells.