Gene expression profiles of human CD8+ T cells: IL-12 and IFN-a polarized in vitro stimulated and ex vivo sorted CCR7hi and CXCR3hi populations
Ontology highlight
ABSTRACT: CD8+ cytotoxic T lymphocytes (CTLs) play a major role in defense against intracellular pathogens, and their functions are specified by antigen recognition and innate cytokines. While effector CTLs eliminate the infection, a small population of memory cells are retained that yields more rapid and robust response upon re-infection. Antigen presenting cells secrete an array of innate cytokines including IL-12 and IFN-α after recognition of pathogens. Both IL-12 and IFN-α have been shown to act as the third signal regulating the development of CTLs. We have shown that these two cytokines have a non-redundant effect in generation of human effector CTL. IL-12 alone is sufficient for effector CTL genesis marked by IFN-γ and TNF-α production, as well as increased cytolytic activity. Even in the presence of IFN-α, IL-12 programs CTLs that express the chemokine receptor CXCR3 and effector cytokines. Using microarray analysis we have investigated how IL-12 and IFN-α differentially regulate the genetic programming pathways that give rise to effector CTLs among multiple human donors. We have also analyzed the gene expression patterns of cells sorted from healthy human peripheral blood that display surface markers of effector memory CTL (designated as ex vivo) samples. 5 healthy human donor samples were used for the in vitro cultures. For each donor the CFSE labeled cells (CD8+CD45RA+) were cultured in the presence of neutralized, IL-12, IFN-a, and IL-12+IFN-a conditions and plate-bound anti-CD3+anti-CD28 for 3.5 days. Total RNA from CFSEhi (Undiv) and CFSElo (Div) sorted cells were used for Illumina Bead Array. 4 healthy human donor samples were used for the ex vivo samples. Total RNA was collected from FACS sorted CD8+CCR7hiCXCR3lo and CD8+CCR7loCXCR3hi cells without any stimulation.
ORGANISM(S): Homo sapiens
SUBMITTER: Fatema Chowdhury
PROVIDER: E-GEOD-27337 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA