Microarray gene expression profiling of heart failure induced in apolipoprotein E-deficient mice by treatment with rosiglitazone
Ontology highlight
ABSTRACT: The anti-diabetic drug and agonist of the peroxisome proliferator-activated receptor gamma (Pparg), rosiglitazone, was recently withdrawn in many countries because the drug use was associated with an increased risk of heart failure. To investigate underlying pathomechanisms, we chose 6-month-old apolipoprotein E (apoE)-deficient mice, which are prone to atherosclerosis and insulin resistance, and thereby mimic the risk profile of patients with cardiovascular disease. After 8 weeks of rosiglitazone treatment (30 mg/kg/day), echocardiography and histology analyses demonstrated that rosiglitazone had induced heart failure with cardiac dilation. Concomitantly, cardiac lipid overload and lipid-induced cardiomyocyte death developed. The microarray gene expression study of heart tissue from rosiglitazone-treated apoE-deficient mice relative to untreated apoE-deficient mice and non-transgenic B6 mice identified cardiac Pparg-dependent lipid metabolism genes in rosiglitazone-treated mice, which seem to trigger a major heart failure promoting pathway. Microarray gene expression profiling was performed with heart tissue isolated from three study groups: (i) rosiglitazone-treated 8-month-old apolipoprotein (apoE)-deficient mice with symptoms of heart failure, (ii) untreated 8-month-old apoE-deficient mice, and (iii) age-matched, untreated, non-transgenic B6 control mice.
ORGANISM(S): Mus musculus
SUBMITTER: Ursula Quitterer
PROVIDER: E-GEOD-28031 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA