Project description:Nucleosome structure directly influences gene transcription. However, the function of each histone residue remains largely unknown. Here we profiled gene expression changes upon the mutation of individual residues of histone H3 and H4. Histone residues grouped by expression change similarity displayed overall structural relevance. This regulatory functional map of the core histones led to novel findings. First, the residues specific to each histone family tend to be more influential than those commonly found among different histones. Second, unlike histone acetylations, H3K4 trimethylation does not appear to be prerequisite for gene activation. Third, H3Q5 has been newly identified for its putative interactions with many chromatin regulators for transcription control. Lastly, the nucleosome lateral surface seems to play a key role through interactions with the surrounding DNA. Remarkably, we discovered a novel role for H3K56 in chromatin dynamics. The deletion of this residue, but not the alteration of acetylation states, caused a genome-wide decrease in nucleosome mobility and stabilized nucleosome positioning near transcription start and end sites. Occupying the DNA entry/exit site, H3K56 is thought to modulate nucleosome sliding along DNA. Taken together, genomics approaches such as microarray and deep sequencing prove valuable for mapping the function of histone residues. Microarray analysis was performed for 123 histone mutants and four wild-types as two reaplications of H3 and H4 of Saccharomyces ceravisiae.
Project description:Nucleosome structure directly influences gene transcription. However, the function of each histone residue remains largely unknown. Here we profiled gene expression changes upon the mutation of individual residues of histone H3 and H4. Histone residues grouped by expression change similarity displayed overall structural relevance. This regulatory functional map of the core histones led to novel findings. First, the residues specific to each histone family tend to be more influential than those commonly found among different histones. Second, unlike histone acetylations, H3K4 trimethylation does not appear to be prerequisite for gene activation. Third, H3Q5 has been newly identified for its putative interactions with many chromatin regulators for transcription control. Lastly, the nucleosome lateral surface seems to play a key role through interactions with the surrounding DNA. Remarkably, we discovered a novel role for H3K56 in chromatin dynamics. The deletion of this residue, but not the alteration of acetylation states, caused a genome-wide decrease in nucleosome mobility and stabilized nucleosome positioning near transcription start and end sites. Occupying the DNA entry/exit site, H3K56 is thought to modulate nucleosome sliding along DNA. Taken together, genomics approaches such as microarray and deep sequencing prove valuable for mapping the function of histone residues. Performing Mnase-seq for six histone mutants and two wild-types in Saccharomyces cerevisiae
Project description:Open chromatin provides access to a wide spectrum of DNA binding proteins for DNA metabolism processes such as transcription, repair, recombination, and replication. In this regard, open chromatin profiling has been widely used to identify the location of regulatory regions, including promoters, enhancers, insulators, silencers, replication origins, and recombination hotspots. Regulatory DNA elements are made accessible by nucleosome-depeleted states. Thus, nucleosome remodelling and modification should be intimately coupled with open chromatin formation and regulation. However, our knowledge of nucleosome regulation is largely limited to promoter regions, which comprise only a subset of all regulatory loci in the genome. In order to examine nucleosome patterns in open chromatin regions, we performed micrococcal nuclease (MNase) sequencing for a laboratory strain of yeast. Nucleosome occupancy profiled by Micrococcal nuclease (MNase) digestion
Project description:Fungal group III histidine kinases are the molecular targets of some classes of fungicides. In contrast to the yeast Saccharomyces cerevisiae, the fungal pathogen Candida albicans possesses a group III histidine kinase, CaNik1p, also called Cos1p. To investigate the function of CaNIK1, the gene was expressed in S. cerevisiae. The transformants became susceptible to antifungal compounds to which the wild-type strain is resistant. The susceptibility was related to the activation of the MAP kinase Hog1p of the osmotic stress response pathway. Gene expression analysis revealed a strong overlap of the responses to osmotic stress and to fludioxonil at early time points. While the response to fludioxonil persisted, the response to osmotic stress was diminished with time. S. cerevisiae expressing Candida albicans Nik1p were treated with 10 µg/ml fludioxonil. As a comparison, another culture of S. cerevisiae expressing Candida albicans Nik1p was treated with 1 M sorbitol to induce osmotic stress response. One culture remained untreated as a control. From all cultures, samples were taken after a duration of 15, 30 and 60 min.
Project description:Knowing the exact positions of nucleosomes not only advances our understanding of their role in gene regulation, but also the mechanisms that underlie between-species variation in chromatin structure. We have generated a chemical map of nucleosomes in vivo in Schizosaccharomyces pombe at base pair resolution. This new map reveals that S.pombe genome shares a similar periodic linker length distribution with Saccharomyces cerevisiae, but with major distinctions in nucleosomal/linker DNA sequence features. In S.pombe, A/T rich sequences are enriched in the nucleosome core region, particularly +/-20 bp of dyad, while they are disfavored in S.cerevisiae nucleosomes. The poly (dA-dT) tracts only slightly affect the nucleosome occupancy in S.pombe; and they possess preferential rotational positions within the nucleosome core with significant enrichment in the 10-30 bp region from the dyad for longer tracts. S.pombe does not have well-defined nucleosome free region immediately upstream of most transcription start sites (TSS), instead the -1 nucleosome is positioned with regular distance to the +1 nucleosome, and its occupancy is negatively correlated with gene expression. The nucleosomes around TSS show more pronounced bidirectional phasing when the intergenic distance is relatively short, and the downstream nucleosome positioning is strongly correlated with DNA sequence features. We discovered that heterochromatin regions tend to have sparse nucleosome positioning, mixed with both well-positioned and fuzzy nucleosomes. The S.pombe map suggests that some of nucleosome positioning codes, formerly thought to be intrinsic, may largely depend on species-specific extrinsic factors including linker histone, chromatin remodelers and other DNA-binding proteins. 2 samples were analyzed with high throughput paired-end parallel sequencing. Both samples were created using the same chemical mapping protocol
Project description:Maintenance of the correct level and organization of nucleosomes is crucial for genome function. Here we uncover a role for a conserved bromodomain AAA-ATPase, Abo1, in maintenance of nucleosome architecture in fission yeast. Cells lacking abo1+ experience both a reduction and mis-positioning of nucleosomes at transcribed sequences in addition to increased intragenic transcription, phenotypes that are hallmarks of defective chromatin re-establishment behind RNA polymerase II. Abo1 is recruited to gene sequences and associates with histone H3 and the histone chaperone FACT. Furthermore, the distribution of Abo1 on chromatin is disturbed by impaired FACT function. The role of Abo1 extends to some promoters and also to silent heterochromatin. Abo1 is recruited to pericentromeric heterochromatin independently of the HP1 ortholog, Swi6, where it enforces proper nucleosome occupancy. Consequently, loss of Abo1 alleviates silencing and causes elevated chromosome mis-segregation. We suggest that Abo1 provides a histone chaperone function that maintains nucleosome architecture genome-wide. A chromatin-seq/MNase-seq approach called Chromatin Particle Spectrum Analysis (Kent et al., (2011) Nucleic Acids Res. 39:e26) was used to map and compare nucleosome position in wild-type (strain 972) and isogenic abo1 knock-out (strain HM463) fission yeast cells. For each strain, three independent in vivo MNase digest bio-reps were performed and the purified DNA pooled. CPSA was performed using paired-end mode Illumina technology with pooled samples multiplexed over two HiSeq2000 lanes. Each CPSA paired read describes a microcococcal nuclease (MNase) resistant DNA species from chromatin, with the insert-size equivalent to the size of DNA protection. For each strain type, two analysed data sets are provided here: one listing the genomic distribution of MNase-protected DNAs of 150bp (â150bp CPSA size classâ) and corresponding to mono-nucleosomes; the other listing the genomic distribution of MNase-protected DNAs of 300bp (â300bp CPSA size classâ) and corresponding to di-nucleosomes.
Project description:ISWI-family chromatin remodelers organize nucleosome arrays, while SWI/SNF-family remodelers (RSC) disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex, or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. RSC and ISW1a largely co-localize, and genomic nucleosome studies using rsc isw1 mutant combinations revealed opposing functions: promoters classified with a nucleosome-deficient region (NDR) gain nucleosome occupancy in rsc mutants, but this gain is attenuated in rsc isw1 double mutants. Furthermore, promoters lacking NDRs have the highest occupancy of both remodelers, consistent with regulation by nucleosome occupancy, and decreased transcription in rsc mutants. Taken together, we provide the first genetic and genomic evidence for RSC-ISW1a antagonism, and reveal different mechanisms at two different promoter architectures. Genome-wide nucleosome occupancy maps in RSC and rsc null strains were generated by paired-end sequencing of mononucleosomal DNA. Strains carrying the Sth1 degron allele and either pGal-UBR1 (YBC3386) or ubr1 null (YBC3387) represent RSC null and RSC wildtype, respectively.
Project description:Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic role in transcription and chromatin dynamics remains poorly understood. Here, we investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Our data show that Set1 and Jhd2 predominantly co-regulate transcription. We find combined activities of Set1 and Jhd2 via H3K4 methylation contribute to positive or negative transcriptional regulation at shared target genes. Providing mechanistic insights, our data reveal that Set1 and Jhd2 together control nucleosomal occupancy during transcriptional co-regulation. Moreover, we find a remarkable genome-wide co-regulation of nucleosome and chromatin structure by Set1 and Jhd2 at different groups of transcriptionally active or inactive genes and at different regions within yeast genes. Overall, our study prompts a model wherein combined actions of Set1 and Jhd2 via H3K4 methylationâdemethylation control chromatin dynamics during various facets of transcriptional regulation. Genome-wide nucleosome maps were generated from three different yeast strains representing wild type control, set1 null and jhd2 null mutants. Three independent biological samples were grown for each strain, nucleosomes were prepared by micrococcal nuclease digestion, libraries were prepared, mononculeosomal DNA was isolated, sequenced, and analyzed separately.
Project description:The exact positions of nucleosomes along genomic DNA can influence many aspects of chromosome function, yet existing methods for mapping nucleosomes do not provide the necessary single base pair accuracy to determine these positions. Here we develop and apply a new approach for direct mapping of nucleosome centers based on chemical modification of engineered histones. The resulting map locates nucleosome center positions genome-wide in unprecedented detail and accuracy. It reveals novel aspects of the in vivo nucleosome organization that are linked to transcription factor binding, RNA polymerase pausing, and the higher order structure of the chromatin fiber itself. 6 samples were analyzed with high throughout parallel sequencing. All samples were created using the same chemical mapping protocol except with varying reaction times. The different reaction times did not make any significant difference in the nucleosome maps so all the data, for the 6 samples, were combined into one data set for the paper and are all considered replicates. The 6 samples are as follows: 1. 20 minute reaction time (single-end sequencing) 2. 20 minute reaction time (single-end sequencing) 3. 1 minute reaction time (single-end sequencing) 4. 1.5 minute reaction time (single-end sequencing) 5. 20 minute reaction time (paired-end sequencing) 6. 1.5 minute reaction time (paired-end sequencing)
Project description:Protein methylation catalyzed by SAM-dependent methyltransferase represents a major PTM involved in important biological processes. Because methylation can occur on nitrogen, oxygen and sulfur centers and multiple methylation states exist on the nitrogen centers, methylproteome remains poorly documented. Here we present the methylation by isotope labeled SAM (MILS) strategy for a highly-confident analysis of the methylproteome of the SAM-auxotrophic Saccharomyces cerevisiae based on the online multidimensional μHPLC/MS/MS technology. We identified 117 methylated proteins, containing 182 methylation events associated with 174 methylation sites. About 90% of these methylation events were previously unknown. Our results indicated, 1) over 6% of the yeast proteome are methylated, 2) the amino acid residue preference of protein methylation follows the order Lys >> Arg > Asp > Glu ≈ Gln ≈ Asp > His > Cys, 3) the methylation state on nitrogen center is largely exclusive, and 4) the methylated proteins are located mainly in nucleus/ribosome associated with translation/transcription and DNA/RNA processing. Our dataset is the most comprehensive methylproteome known-to-date of all living organisms, and should significantly contribute to the field of protein methylation and related research.