Genome-wide transcript profiling associated with metabolic regulation of Poplar N storage and cycling
Ontology highlight
ABSTRACT: Previous research has shown that glutamine and sucrose treatment of excised poplar stems induces bark storage protein (BSP) gene expression. The objectivel of this research is to identify changes in gene expression associated with metabolic regulation of nitrogen storage and cycling and use this information to identify potential regulatory genes. Significant, differentially expressed genes were identified in excised poplar stems incubated in solutions of glutamine or glutamine+glucose compared to incubation with water alone Poplar shoots with approximately 10 nodes were excised from greenhouse stock plants that were grown in LD photoperiods. The basal leaves were removed to leave only the 5 apical leaves. The basal end of the 5-leaved shoots were preincubated by placing in water for 24 h in a growth chamber (20 ◦C, 16-light/8-h dark). After 24 h pre-incubation, the trimed stems were then transfered to 25 mM aqueous solutions of glutamine, glucose, or glutamine+glucose as well as a water control and incubated for either 48 or 72 h. After 48 h and 72 h of incubation in the respective solutions, bark tissue was collected from each treatement and immediately frozen in liquid nitrogen. For each treatment, 3 biological replicates were collected with 5 excised stems per biological replicate. Bark from 2 control with 3 biological replicates were also collected. Control 1 was collected immediately after excising from the stock plant and control 2 was collected after the 24 h preincubation period.
ORGANISM(S): Populus trichocarpa
SUBMITTER: rongshuang lin
PROVIDER: E-GEOD-29303 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA