Post-mating expression of female D. melanogaster genomes experimentally evolved under different post-copulatory sexual selection regimes
Ontology highlight
ABSTRACT: By combining an experimental evolution approach with genomic techniques, we investigated the effects of seminal fluid on female gene expression. In our study, we experimentally manipulated the mating system in replicate populations of D. melanogaster, by removing post-copulatory sexual selection, with the aim of testing differences in short term post-mating reaction of females evolved under different mating strategies. We show that monogamous females suffer decreased fecundity, regardless of the type of male they were mated with, and that their post-mating gene expression profiles differ significantly from promiscuous females, involving 1141 transcripts (9% of the genes tested). These transcripts are active in several tissues, mainly ovaries, neural tissues, midgut and spermathecae, and are involved in metabolic processes, reproduction and signaling pathways. Our results provide a list of candidate genes responsible for the decrease in female fecundity in the absence of post-copulatory sexual selection, and demonstrate how the female post-mating response can evolve under different mating systems over relatively short time frames. From a LHM base population, we created 8 replicate populations and maintained them under experimental evolution: 4 populations were allowed to mate only once every generation (monogamy), and the other 4 were kept under the standard mating protocol (promiscuous). After 46 generation, we crossed males and females within the same population and with individuals of the opposite treatment. Mated female flies were frozen 6 h after mating and RNA extracted. Two biological replicates per cross per population (2x2x8=32 samples).
ORGANISM(S): Drosophila melanogaster
SUBMITTER: Paolo Innocenti
PROVIDER: E-GEOD-30089 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA