Transcriptional responses to engineered nanoplatforms for drug delivery in primary human aortic endothelial cells.
Ontology highlight
ABSTRACT: This study evaluated transcriptional effects of nanomaterials that have been proposed for use as platforms for drug delivery. We tested SiO2 that had been surface modified to have a positive zetapotential of different geometries as well PAMAM dendrimers with different surface charges. We tested these materials on human aortic endothelial cells (HAECs) since we were interested in determining if there was a toxicogenomic response in endothelial cells that may come into contact with drug delivery nanoplatforms. The most pronounced transcriptional response resulted from the SiO2 treatement - the most prevelant responses were cell cycle, lipid metabolism and pro-inflammatory responses - with fewer responses from the PAMAM dendrimers. The lipid metabolism responses may relate to teh positive surface character as this response was not observed in the G3.5-COOH dendrimers. Indeed, the G3.5-COOH dendrimers were non-toxic and did not demonstrate any consistent transcriptional response. Primary human aortic endothial cells (HAECs) were grown in 6 well plates (in 2 ml of medium) until they were >80% confluent by visual inspection. Daily media changes allowed continued growth for HAECs that demonstrate contact inhibition. The cells were then incubated with nanomaterials: surface modified SiO2 with worm and sphere goemetries (the spheres were 200 nm in diameter and the worm's cylindrical diameter 200 nm and the length was ~ 1000 nm); and PAMAM dendrimers with different surface charges (G3.5-COOH are negative and G4-NH2 are positive). RNA was collected after 4 and 24 hrs (one SiO2 worm sample was at 1.5 hrs due to space available on the 4-pack microarrays). Triplicate biological samples (indicated by the 'a', 'b', and 'c' designations in the sample names) were evaluated for gene expression changes by microarray analysis.
ORGANISM(S): Homo sapiens
SUBMITTER: Philip Moos
PROVIDER: E-GEOD-35142 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA