Altered gene expression in the small intestine of IE-Cpr-null mice
Ontology highlight
ABSTRACT: The NADPH-cytochrome P450 reductase (CPR) is essential for the functioning of microsomal cytochrome P450 (P450) monoxygenases. The biological functions of the CPR-dependent enzymes in the intestine are not known, despite the vast knowledge available on the biochemical properties of the various oxygenases. A mouse model with intestinal epithelium (IE)-specific Cpr-knockout (IE-Cpr-null) was recently generated in this laboratory (Zhang et al., Drug Metab. Dispos., 37, 651-657, 2009). The IE-Cpr-null mice did not display any obvious abnormalities in growth, development, or reproduction, and their intestines appeared to have a normal structure. Despite the absence of observable phenotypes, we hypothesized that loss of the enterocyte CPR expression will impact homeostasis of endogenous compounds, and expression of genes, that have critical biological function in the small intestine. In the present study, we have performed genomic analyses for enterocytes from IE-Cpr-null mice and their wild-type littermates, using Affymetrix Mouse Expression Set 430A 2.0 GeneChip Arrays. Our aim was to identify small intestinal gene-expression changes, which may shed light on potential biological roles of CPR and CPR-dependent enzymes in the small intestine. Our analysis revealed significant expression increases in P450s, transporters, cholesterol biosynthesis, and (unexpectedly) antigen presentation/processing. Further genomic and biochemical analyses revealed potential mechanisms linking CPR-dependent enzymes and the expression of major histocompatibility complex class II genes in the small intestine. Adult (2.5-3.0 month-old) male IE-Cpr-null and WT litermates were used for all experiments. RNA was collected from eight mice of each genotype and RNA from two mice of the same genotype was pooled prior to hybridization to the microarray to create a total of four samples for each genotype.
ORGANISM(S): Mus musculus
SUBMITTER: Jaime D'Agostino
PROVIDER: E-GEOD-35293 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA