Architectural protein subclasses shape 3-D organization of genomes during lineage commitment
Ontology highlight
ABSTRACT: Understanding the topological configurations of chromatin can reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3-D interactions that undergo marked reorganization at the sub-Mb scale during differentiation. Distinct combinations of CTCF, Mediator, and cohesin show widespread enrichment in architecture at different length scales. CTCF/cohesin anchor long-range constitutive interactions that might form the topological basis for invariant sub-domains. Conversely, Mediator/cohesin together with pioneer factors bridge short-range enhancer-promoter interactions within and between larger sub-domains. Knockdown of Smc1 or Med12 in ES cells results in disruption of spatial architecture and down-regulation of genes found in cohesin-mediated interactions. We conclude that cell type-specific chromatin organization occurs at the sub-Mb scale and that architectural proteins shape the genome in hierarchical length scales. Analysis of higher-order chromatin chromatin architecture in mouse ES cells and ES-derived NPCs. Analysis of CTCF and Smc1 occupied sites in ES-derived NPCs.
ORGANISM(S): Mus musculus
SUBMITTER: Jennifer Phillips-Cremins
PROVIDER: E-GEOD-36203 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA