The application of nonsense-mediated mRNA decay inhibition to the identification of breast cancer susceptibility genes
Ontology highlight
ABSTRACT: Identification of novel, highly penetrant, breast cancer susceptibility genes will require the application of additional strategies beyond that of traditional linkage and candidate gene approaches. Approximately one-third of inherited genetic diseases, including breast cancer susceptibility, are caused by frameshift or nonsense mutations that truncate the protein product [1]. Transcripts harbouring premature termination codons are selectively and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. Blocking the NMD pathway in any given cell will stabilise these mutant transcripts, which can then be detected using gene expression microarrays. This technique, known as gene identification by nonsense-mediated mRNA decay inhibition (GINI), has proved successful in identifying sporadic nonsense mutations involved in many different cancer types. However, the approach has not yet been applied to identify germline mutations involved in breast cancer. We therefore attempted to use GINI on lymphoblastoid cell lines (LCLs) from multiple-case, non-BRCA1/2 breast cancer families in order to identify additional high-risk breast cancer susceptibility genes. We applied GINI to a total of 24 LCLs,established from breast-cancer affected and unaffected women from three multiple-case non-BRCA1/2 breast cancer families. We then used Illumina gene expression microarrays to identify transcripts stabilised by the NMD inhibition. Total RNA obtained from the lymphoblastoid cell lines derived from 24 individuals.
ORGANISM(S): Homo sapiens
SUBMITTER: Julie Johnson
PROVIDER: E-GEOD-37210 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA