Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Prognostic gene signature for AML


ABSTRACT: Acute myeloid leukemia (AML) is a heterogeneous disease in respect of molecular aberrations and prognosis. We used gene expression profiling of 562 patients treated in the German AMLCG 1999 trial to develop a gene signature that predicts survival in AML. Analysis of 562 samples (140 HGU-133plus2; 422 HGU-133A; 422 HGU-133B) from adult patients with acute myeloid leukemia (AML).

ORGANISM(S): Homo sapiens

SUBMITTER: Tobias Herold 

PROVIDER: E-GEOD-37642 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study.

Li Zejuan Z   Herold Tobias T   He Chunjiang C   Valk Peter J M PJ   Chen Ping P   Jurinovic Vindi V   Mansmann Ulrich U   Radmacher Michael D MD   Maharry Kati S KS   Sun Miao M   Yang Xinan X   Huang Hao H   Jiang Xi X   Sauerland Maria-Cristina MC   Büchner Thomas T   Hiddemann Wolfgang W   Elkahloun Abdel A   Neilly Mary Beth MB   Zhang Yanming Y   Larson Richard A RA   Le Beau Michelle M MM   Caligiuri Michael A MA   Döhner Konstanze K   Bullinger Lars L   Liu Paul P PP   Delwel Ruud R   Marcucci Guido G   Lowenberg Bob B   Bloomfield Clara D CD   Rowley Janet D JD   Bohlander Stefan K SK   Chen Jianjun J  

Journal of clinical oncology : official journal of the American Society of Clinical Oncology 20130204 9


<h4>Purpose</h4>To identify a robust prognostic gene expression signature as an independent predictor of survival of patients with acute myeloid leukemia (AML) and use it to improve established risk classification.<h4>Patients and methods</h4>Four independent sets totaling 499 patients with AML carrying various cytogenetic and molecular abnormalities were used as training sets. Two independent patient sets composed of 825 patients were used as validation sets. Notably, patients from different se  ...[more]

Similar Datasets

2016-02-26 | E-GEOD-78132 | biostudies-arrayexpress
2011-10-13 | E-GEOD-25571 | biostudies-arrayexpress
2011-10-13 | E-GEOD-22762 | biostudies-arrayexpress
2010-05-16 | E-GEOD-15210 | biostudies-arrayexpress
2023-08-23 | PXD038691 | Pride
2008-10-26 | E-GEOD-12417 | biostudies-arrayexpress
2008-02-27 | E-GEOD-8043 | biostudies-arrayexpress
2017-12-31 | E-MTAB-5434 | biostudies-arrayexpress
2012-09-19 | E-GEOD-32240 | biostudies-arrayexpress
2016-05-14 | E-GEOD-79605 | biostudies-arrayexpress