VSL#3 protects against development of visceral pain in the neonatal maternal separation model: A whole genome microarray study
Ontology highlight
ABSTRACT: Background & Aims: Irritable bowel syndrome (IBS) is a disorder characterized by chronic abdominal pain and is linked to post-inflammatory and stress-correlated factors that cause changes in the perception of visceral events. Increased evidence indicates that probiotic bacteria may be useful in treating IBS. Our aims were to evaluate the efficacy of treatment with VSL#3, a mixture of 8 probiotic bacteria strains, in the neonatal maternal separation (NMS)-induced visceral hypersensitivity rat model and to determine whether it modulates the colonic expression of pain-related genes. Methods: Male NMS pups were treated orally with placebo or VSL#3 at days 3-60, while normal, not separated rats were used as control. After 60 days from birth, perception of painful sensation induced by colorectal distension (CRD) was measured by assessing the abdominal withdrawal reflex (score 0-4). The colonic gene expression analysis was assessed by using Agilent Whole Rat Genome Oligo Microarrays. Results: NMS rats exhibited both hyperalgesia and allodynia when compared with controls. VSL#3 showed a potent analgesic effect on CRD-induced pain without modifying colorectal compliance. The microarray analysis demonstrated that NMS rats had both over- and downregulation of several genes involved in inflammatory and painful processes and VSL#3 was able to counteract these alterations. Conclusions: This study indicates that VSL#3 is effective in reducing visceral pain in an experimental model of IBS by induction or suppression of pain-modulating genes. These observations provide support for the use of VSL#3 in the treatment of painful conditions related to IBS. The dataset comprises 12 samples divided into three sample groups each representing a certain treatment condition of male rats.
ORGANISM(S): Rattus norvegicus
SUBMITTER: Stefano Fiorucci
PROVIDER: E-GEOD-38942 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA