Project description:PU.1 is an Ets family transcription factor that is essential for the differentiation of both myeloid and lymphoid cells. PU.1 is down-regulated in classical Hodgkin lymphoma cells via methylation of the PU.1 promoter. To evaluate whether down-regulation of PU.1 is essential for the growth of cHL cells, we generated L428 derived cell lines conditionally express PU.1 by tet-off system (designated L428tetPU.1). Conditonally expressed PU.1 by tetracycline removal induced complete growth arrest and apoptosis in L428 cells. To elucidate the mechanisms underlying cell cycle arrest and apoptosis induced by PU.1, we compared gene expression profiles of L428tetPU.1 cells 0, 1 and 3 days after PU.1 induction, by DNA microarray. We extracted total RNA from L428tetPU.1 cells 0, 1 and 3 days after PU.1 induction by tetracycline removal. We compared gene expression profiles of KL428tetPU.1 cells 0, 1 and 3 days after PU.1 induction using DNA microarray analysis. 4 independent experiments were performed with each RNA samples.
Project description:PU.1 is an Ets family transcription factor that is essential for the differentiation of both myeloid and lymphoid cells. PU.1 is down-regulated in classical Hodgkin lymphoma cells via methylation of the PU.1 promoter. To evaluate whether down-regulation of PU.1 is essential for the growth of cHL cells, we generated KM-H2 derived cell lines conditionally express PU.1 by tet-off system (designated KM-H2tetPU.1). Conditonally expressed PU.1 by tetracycline removal induced complete growth arrest and apoptosis in KM-H2 cells. To elucidate the mechanisms underlying cell cycle arrest and apoptosis induced by PU.1, we compared gene expression profiles of KM-H2tetPU.1 cells 0, 1 and 3 days after PU.1 induction, by DNA microarray. We extracted total RNA from KM-H2tetPU.1 cells 0, 1 and 3 days after PU.1 induction by tetracycline removal. We compared gene expression profiles of KM-H2tetPU.1 cells 0, 1 and 3 days after PU.1 induction using DNA microarray analysis. 4 independent experiments were performed with each RNA samples.
Project description:Suppressor of cytokine signaling 1 (SOCS1) mutations are among the most frequent somatic mutations in classical Hodgkin lymphoma (cHL), yet their prognostic relevance in cHL is unexplored. Here, we performed laser-capture microdissection of Hodgkin/Reed-Sternberg (HRS) cells from tumor samples in a cohort of 105 cHL patients. Full-length SOCS1 gene sequencing showed mutations in 61% of all cases (n = 64/105). Affected DNA-motifs and mutation pattern suggest that many of these SOCS1 mutations are the result of aberrant somatic hypermutation and we confirmed expression of mutant alleles at the RNA level. Contingency analysis showed no significant differences of patient-characteristics with HRS-cells containing mutant vs. wild-type SOCS1. By predicted mutational consequence, mutations can be separated into those with non-truncating point mutations ('minor' n = 49/64 = 77%) and those with length alteration ('major'; n = 15/64 = 23%). Subgroups did not differ in clinicopathological characteristics; however, patients with HRS-cells that contained SOCS1 major mutations suffered from early relapse and significantly shorter overall survival (P = 0.03). The SOCS1 major status retained prognostic significance in uni-(P = 0.016) and multivariate analyses (P = 0.005). Together, our data indicate that the SOCS1 mutation type qualifies as a single-gene prognostic biomarker in cHL.
Project description:Classical Hodgkin lymphoma (cHL) is one of the most prevalent lymphomas with a unique cell composition compared to other lymphoma entities. Rare, malignant Hodgkin and Reed-Sternberg (HRS) cells embedded with an extensive but ineffective immune infiltration were previously characterized by a large number of genetic and epigenetic alterations. Recently, microRNA profiling studies highlighted the importance of small non-coding RNA in cHL. This review summarizes available literature data and provides a detailed comparison of four studies where cHL cell lines and microdissected HRS cells were used. Several microRNAs were found to be consistently up- (let-7-f, mir-9, mir-21, mir-23a, mir-27a, mir-155, and mir-196a) or downregulated (mir-138 and mir-150) in cHL. These deregulated microRNAs are involved in the processes crucial for cHL pathogenesis, such as impaired B cell development (mir-9, mir-150, and mir-155), NFκB hyperactivation (mir-155 and mir-196a), and immune evasion (mir-138). Therefore, the deregulation of microRNA expression can be considered a complementary mechanism to genetic alterations promoting lymphomagenesis. Moreover, the expression of let-7f, mir-9 and mir-27a is specific for cHL and can serve as a biomarker to distinguish this lymphoma from other B cell lymphomas. However, additional in-depth and high throughput analysis of microRNA expression in HRS cells is necessary to decipher the complete picture of microRNA in cHL.
Project description:Comparison between gene expression profiles of splenic stroma from wild type and lymphotoxin beta receptor knockout mice. The goal was to identify a set of genes which expression in splenic stroma is under lymphotoxin control and which can potentially be important for proper stroma development and function in secondary lymphoid organs. Total RNA isolated from mechanically separated stroma and splenocytes of wild type and LTbR-KO mice, as well as cultured spleen stroma cells from wild type mice. technical replicate - extract: A,B technical replicate - extract: C,D technical replicate - extract: E,F technical replicate - extract: G,H
Project description:Hodgkin lymphoma is a haematological malignancy predominantly affecting young adults. Hodgkin lymphoma is a highly curable disease by current treatment standards. Latest treatment guidelines for Hodgkin lymphoma however imply access to diagnostic and treatment modalities that may not be available in settings with restricted healthcare resources. Considerable discrepancies in Hodgkin lymphoma patient survival exist, with poorer outcomes reported in resources-constrained settings. Resources-stratified guidelines for diagnosis, staging and treatment of Hodgkin lymphoma were derived in an effort to optimize patient outcome provided a given setting of available resources. These guidelines were derived based on the framework of the Breast Health Global Initiative stratifying resource levels in basic, core, advanced and maximal categories.
Project description:The glycoprotein CD47 regulates antiphagocytic activity via signal regulatory protein alpha (SIRPa). This study investigated CD47 expression on Hodgkin and Reed-Sternberg (HRS) cells in the classical Hodgkin lymphoma (cHL) tumour microenvironment and its correlation with prognosis, programmed-death (PD) immune markers, and SIRPa+ leukocytes. We conducted immunohistochemistry with CD47 and SIRPa antibodies on diagnostic biopsies (tissue microarrays) from cHL patients from two cohorts (n = 178). In cohort I (n = 136) patients with high expression of CD47 on HRS cells (n = 48) had a significantly inferior event-free survival [hazard ratio (HR) = 5.57; 95% confidence interval (CI), 2.78-11.20; p < 0.001] and overall survival (OS) (HR = 8.54; 95% CI, 3.19-22.90; p < 0.001) compared with patients with low expression (n = 88). The survival results remained statistically significant in multivariable Cox regression adjusted for known prognostic factors. In cohort II (n = 42) high HRS cell CD47 expression also carried shorter event-free survival (EFS) (HR = 5.96; 95% CI, 1.20-29.59; p = 0.029) and OS (HR = 5.61; 95% CI, 0.58-54.15; p = 0.136), although it did not retain statistical significance in the multivariable analysis. Further, high CD47 expression did not correlate with SIRPa+ leukocytes or PD-1, PD-L1 and PD-L2 expression. This study provides a deeper understanding of the role of CD47 in cHL during an era of emerging CD47 therapies.
Project description:High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. For parental HEY, two replicates per condition (control=10%, SNS032-treated, PD0332991-treated) were analyzed. For CDKi-resistant cells, two individual subclones derived from single cells were analyzed, except OAW28 sublines (two polyclonal populations per subline), OV90-PD/SNS-R (two polyclonal populations) and OV90-SNS-R-1 (polyclonal population, whereas OV90-SNS-R-2 is derived from a single colony).
Project description:Classical Hodgkin lymphoma (cHL) is a malignancy characterized by the presence of Hodgkin and Reed-Sternberg (HRS) cells within a complex tumor microenvironment (TME). Despite advances in conventional therapies, a subset of cHL patients experience relapse or refractory disease, necessitating the exploration of novel treatment strategies. Chimeric antigen receptor T cell (CAR-T cell) therapy has emerged as a promising approach for the management of cHL, harnessing the power of genetically modified T cells to recognize and eliminate tumor cells. In this article, we provide an overview of the pathogenesis of cHL, highlighting the key molecular and cellular mechanisms involved. Additionally, we discuss the rationale for the development of CAR-T cell therapy in cHL, focusing on the identification of suitable targets on HRS cells (such as CD30, CD123, LMP1, and LMP2A), clonotypic lymphoma initiating B cells (CD19, CD20), and cells within the TME (CD123, CD19, CD20) for CAR-T cell design. Furthermore, we explore various strategies employed to enhance the efficacy and safety of CAR-T cell therapies in the treatment of cHL. Finally, we present an overview of the results obtained from clinical trials evaluating the efficacy of CAR-T cell therapies in cHL, highlighting their potential as a promising therapeutic option. Collectively, this article provides a comprehensive review of the current understanding of cHL pathogenesis and the rationale for CAR-T cell therapy development, offering insights into the future directions of this rapidly evolving field.