Project description:In classical Hodgkin Lymphoma (cHL), immunoediting via protein signaling is key to evading tumor surveillance. We aimed to identify immune-related proteins that distinguish diagnostic cHL tissues (=diagnostic tumor lysates, n = 27) from control tissues (reactive lymph node lysates, n = 30). Further, we correlated our findings with the proteome plasma profile between cHL patients (n = 26) and healthy controls (n = 27). We used the proximity extension assay (PEA) with the OlinkTM multiplex Immuno-Oncology panel, consisting of 92 proteins. Univariate, multivariate-adjusted analysis and Benjamini-Hochberg's false discovery testing (=Padj) were performed to detect significant discrepancies. Proteins distinguishing cHL cases from controls were more numerous in plasma (30 proteins) than tissue (17 proteins), all Padj < 0.05. Eight of the identified proteins in cHL tissue (PD-L1, IL-6, CCL17, CCL3, IL-13, MMP12, TNFRS4, and LAG3) were elevated in both cHL tissues and cHL plasma compared with control samples. Six proteins distinguishing cHL tissues from controls tissues were significantly correlated to PD-L1 expression in cHL tissue (IL-6, MCP-2, CCL3, CCL4, GZMB, and IFN-gamma, all p ≤0.05). In conclusion, this study introduces a distinguishing proteomic profile in cHL tissue and potential immune-related markers of pathophysiological relevance.
Project description:Commonly attributed to the prevalence of M2 macrophages, tumor-associated macrophages (TAM) are linked to poor outcome in Hodgkin lymphoma (HL). MYC is supposed to control the expression of M2-specific genes in macrophages, and deficiency in MYC-positive macrophages inhibits tumor growth in mouse models. To verify this hypothesis for HL, seventy-six samples were subjected to immunohistochemical double staining using CD68 or CD163 macrophage-specific antibodies and a reagent detecting MYC. For each cell population, labelled cells were grouped according to low, intermediate and high numbers and related to disease-free survival (DFS) and overall survival (OS). MYC+ cells accounted for 21% and 18% of CD68+ and CD163+ cells, respectively. Numbers of MYC- macrophages were significantly higher in EBV+ cases while no differences were observed for MYC+ macrophages between EBV+ and EBV- cases. Cases with highest numbers of macrophages usually showed worst DFS and OS. In most scenarios, intermediate numbers of macrophages were associated with better outcome than very low or very high numbers. Our observations are reminiscent of the "hormesis hypothesis" and suggest that a relative lack of TAM may allow HL growth while macrophages display an inhibitory effect with increasing numbers. Above a certain threshold, TAM may again support tumor growth.
Project description:Classical Hodgkin lymphoma (cHL) is one of the most prevalent lymphomas with a unique cell composition compared to other lymphoma entities. Rare, malignant Hodgkin and Reed-Sternberg (HRS) cells embedded with an extensive but ineffective immune infiltration were previously characterized by a large number of genetic and epigenetic alterations. Recently, microRNA profiling studies highlighted the importance of small non-coding RNA in cHL. This review summarizes available literature data and provides a detailed comparison of four studies where cHL cell lines and microdissected HRS cells were used. Several microRNAs were found to be consistently up- (let-7-f, mir-9, mir-21, mir-23a, mir-27a, mir-155, and mir-196a) or downregulated (mir-138 and mir-150) in cHL. These deregulated microRNAs are involved in the processes crucial for cHL pathogenesis, such as impaired B cell development (mir-9, mir-150, and mir-155), NFκB hyperactivation (mir-155 and mir-196a), and immune evasion (mir-138). Therefore, the deregulation of microRNA expression can be considered a complementary mechanism to genetic alterations promoting lymphomagenesis. Moreover, the expression of let-7f, mir-9 and mir-27a is specific for cHL and can serve as a biomarker to distinguish this lymphoma from other B cell lymphomas. However, additional in-depth and high throughput analysis of microRNA expression in HRS cells is necessary to decipher the complete picture of microRNA in cHL.
Project description:Interleukin-6 (IL-6) can induce therapeutic resistance for several cancer agents currently used to treat classical Hodgkin lymphoma (cHL). We aimed to investigate whether the presence of IL-6+ leukocytes and IL-6+ Hodgkin-Reed-Sternberg (HRS) cells in the tumor microenvironment (TME) was associated with adverse survival outcomes, expression of other immune markers, and serum IL-6 levels. We used a contemporarily treated cohort (n = 136), with a median follow-up of 13.8 years (range, 0.59-15.9 years). We performed immunohistochemistry with an IL-6 antibody on tissue microarrays from diagnostic biopsies of cHL patients. Patients with IL-6+ leukocytes ≥1% (n = 54 of 136) had inferior event-free survival (hazard ratio [HR] = 3.58; 95% confidence interval [CI], 1.80-7.15) and overall survival (HR = 6.71; 95% CI, 2.51-17.99). The adverse survival was maintained in multivariate Cox regression and propensity score-matched analyses, adjusting for well-known poor-prognostic covariates. The presence of IL-6+ HRS cells and high serum IL-6 levels were not associated with survival. IL-6+ leukocytes correlated with increased proportions of IL-6+ HRS cells (P < .01), CD138+ plasma cells (P < .01), CD68+ macrophages (P = .02), and tryptase-positive mast cells (P < .01). IL-6+ HRS cells correlated with increased proportions of CD68+ macrophages (P = .03), programmed death-ligand 1-positive (PD-L1+) leukocytes (P = .04), and PD-L1+ HRS cells (P < .01). Serum-IL-6 lacked correlation with IL-6 expression in the TME. This is the first study highlighting the adverse prognostic impact of IL-6+ leukocytes in the TME in a cohort of contemporarily treated adult patients with cHL.