Project description:While the mouse cornea has been well characterized morphologically, the transcriptional changes have not been described in detail. To characterize the genes, pathways, and transcriptional regulators involved in mouse cornea development and aging, we isolated whole cornea from wildtype CB6 mice at several developmental timepoints and every 6 months in the adult. Corneal epithelium and stroma were isolated at one timepoint to provide insights into the genes that are unique to each tissue. Total RNA was purified from whole mouse cornea at 12 time points over the life of the mouse and from corneal epithelium and stroma at a single timepoint.
Project description:Ehf is a transcriptional regulator that is highly expressed and enriched in corneal epithelium. To gain insights into the role of Ehf in the corneal epithelium, we performed siRNA knockdown of Ehf in primary human corneal epithelial cells. Primary human corneal epithelial cells were transfected with siEhf or si controls, plated, and harvested at 72 hr.
Project description:Genes specific to Sox9+ pancreatic progenitors were identified by comparing the gene expression in embryonic and adult Sox9+ cells. We used microarray analysis to detail the global changes in gene expression as Sox9 positive embryonic pancreatic progenitors differentiatiate into adult ductal cells or the endocrine lineage. GFP positive cells from Sox9-EGFP mouse pancreas were isolated by FACS at different stages of development (e10.5, e15.5, and p23) for RNA extraction and hybridization to Affymetrix microarrays. To obtain populations highly enriched in Sox9 expression, we collected only GFP Hi populations for analysis. To identify gene expression changes specific to the differentiation of progenitors to ductal cells or endocrine cells, we also isolated and analyzed the gene expression profile of GFP negative cells isolated at p23, as well as GFP positive cells isolated from Ngn3-EGFP mouse pancreas at e15.5. These two populations allow the identification of genes whose expression is associated with the newly differentiated endocrine progeny in the embryo (Ngn3-GFP positive) and adult acinar and endocrine cells at p23.
Project description:The cornea, composed of epithelium, stroma and endothelium, protects the anterior compartment of the eye from damage and allows transmission of light into the eye. While well described morphologically, no studies have investigated the global gene expression changes in the cornea throughout the mouseM-bM-^@M-^Ys life. We characterized the global gene expression profile of mouse cornea from early development through aging, and compared to gene expression in other epithelial tissue, to identify cornea enriched genes, pathways, and transcriptional regulators. We identified Ehf, an ets family transcription factor, as being highly selectively expressed in the corneal epithelium compared to the stroma, and highly expressed in cornea compared to other epithelial tissues. siRNA experiments and Ehf ChIP-Seq on mouse corneal epithelium confirm the role of this factor in promoting epithelial identity and cell differentiation, and suggest it carries out these functions through interactions with other cornea epithelial differentiation factors including Klf4. Whole eye globes were dissected from wild type CB6 mice. Corneal epithelium was isolated by digestion in 50% EMEM/dispase II with 50 mM sorbitol for two hours at 37M-BM-0C. ChIP was performed with an Ehf antibody, and was sequenced with an input control.
Project description:Anopheles gambiae mosquitoes play an important role in malaria transmission. In sub-Saharan Africa, the dry season can last several months. The mechanisms for mosquito population to survive through the dry season are poorly understood. One possible mechanism is that adults increase their desiccation tolerance over the dry season. Genetic analyses have shown that inversions 2La, 2Rb, 2Rc, 2Rd and 2Ru are associated with aridity resistance, however little is known about the transcriptional response of genes in response to desiccation. The results of the present study demonstrate that desiccation affects expression of genes associated with several mosquito physiological mechanisms, including those that protect against water loss, but all structural related genes decreased their expression. The identified differentially expressed genes in response to desiccation stress can lay a foundation for better understanding of molecular mechanisms underling dry-season survival of An. gambiae mosquitoes, so it may provide a different option for malaria vector control. Transcriptional profiles of Anopheles gambiae female mosquitoes were exposed to 70% (standard) or 30% (desiccated) RH without any access to sugar and water at 0hr, 18hr or 36hr.
Project description:To elucidate biological processes underlying the keratocyte, fibroblast, and myofibroblast phenotypes of corneal stromal cells, the gene expression patterns of these primary cultures from mouse cornea were compared with those of the adult and 10-day postnatal mouse cornea.
Project description:Senescence is a biological phenomenon experienced by all living eukaryote organisms. Genome-wide gene expression associated with aging has been explored in model organisms such as Drosophila melanogaster and Caenorhabditis elegans, but this has not been well understood in African malaria vector, Anopheles gambiae. Gene expression profiling using DNA microarray allows for simultaneous study of changes in mRNA levels for thousands of genes. This study examined genome-wide gene expression during aging process in An. gambiae. The influence of blood feeding on gene expression was also examined. The data can be used to further our understanding of mosquito senescence and identify biomarkers for mosquito age grading. Transcriptional profiles of Anopheles gambiae female mosquitoes were determined at 1, 4, 10, 19 and 28 days post adult eclosion. Additionally mosquitoes that had access to blood meals were compared to those that were maintained with access to only water and sugar.
Project description:The transcription factor Snail has been proposed to mediate epithelial-to-mesenchymal transition (EMT) and confer mesenchymal invasive phenotype to epithelial cancer cells To analyze the molecular effects of ectopic Snail expression on an epithelial breast cancer cell line, gene expression profiles of MCF-7 cells transfected to overexpress Snail-6SA variant (MCF-7-Snail) and MCF-7 cells transfected with control plasmid (MCF-7-control) were compared. Development of the cell lines has been previously reported by Zhou et al. (PMID: 15448698). Dataset includes 3 replicate cultures of MCF-7-Snail cells and 3 replicate cultures of MCF-7-control cells
Project description:Purpose: Klf5 plays a critical role in the mouse ocular surface (Kenchegowda et al., 2011. Dev Biol. 356:5-18). Here, we compare wild-type (WT) and Klf5-conditional null (Klf5CN) corneal gene expression at postnatal day-11 (PN11) and PN56 to identify the Klf5-target genes. Methods: Gene expression was compared using Affymetrix microarrays with QPCR validation. Transient transfection assays examined the effect of Klf5 on selected target gene promoter activities. Whole-mount corneal immunofluorescent staining examined neovascularization and CD45+ macrophage influx. Results: Expression of 714 and 753 genes was increased, and 299 and 210 genes decreased in PN11 and PN56 Klf5CN corneas, respectively, with 366 concordant increases, 72 concordant decreases and 3 discordant changes. Canonical pathway analysis identified 35 and 34 significantly (p<0.001) enriched pathways at PN11 and PN56, respectively, with 24 common pathways. PN56 Klf5CN corneas shared 327 increases and 91 decreases with the previously described Klf4CN corneas (Swamynathan et al., 2008. IOVS 49:3360-70). Angiogenesis and immune response-related genes were affected consistent with lymphangiogenesis and macrophage influx in Klf5CN corneas, respectively. Expression of 1574 genes was increased and 1915 decreased, in the WT PN56 compared with PN11 corneas. Expression of many collagens, matrix metalloproteinases and other extracellular matrix associated genes decreased in WT corneas between PN11 and PN56, while that of solute carrier family members increased. Conclusions: Differences in PN11 and PN56 corneal Klf5-target genes reveal dynamic changes in Klf5 functions during corneal maturation. Klf4- and Klf5-target genes do not overlap, consistent with their non-redundant roles in the mouse cornea. Wild type and Klf5-conditional null mouse corneal gene expression at postnatal day-11 and -56 was compared by Affymetrix mouse whole genome 430 2 arrays. Four age-matched PN56 WT and Klf5CN mice, and 3 age-matched PN11 WT and Klf5CN mice each were used for comparison of corneal gene expression by microarrays. Two dissected corneas from each mouse were pooled for isolation of total RNA using the RNeasy Mini kit (Qiagen, Germantown, MD). The quality and integrity of the isolated total RNA was confirmed using an Agilent Bioanalyzer. Total RNAs were amplified and labeled using a 3' IVT Express Kit (Affymetrix Inc., Santa Clara, CA), and hybridized to Affymetrix MG 430 2 chips following the protocol suggested by the manufacturer.
Project description:MicroRNAs (miRNAs) are short (~22 nucleotides) regulatory RNAs that can modulate gene expression and are aberrantly expressed in many diseases including cancer. Previous studies have shown that miRNAs inhibit the translation and facilitate the degradation of their targeted mRNAs making them attractive candidates for use in cancer therapy. However, the potential clinical utility of miRNAs in cancer therapy rests heavily upon our ability to understand and accurately predict the consequences of fluctuations in levels of miRNAs within the context of complex tumor cells. To evaluate the predictive power of current models, levels of miRNAs and their targeted messenger RNAs (mRNAs) were measured in laser captured micro-dissected (LCM) ovarian cancer epithelial cells (CEPI) and compared with levels present in ovarian surface epithelial cells (OSE). We found that the predicted inverse correlation between changes in levels of miRNAs and levels of their mRNA targets held for only ~6-11% of predicted target mRNAs. Our results underscore the complexities of miRNA-mediated regulation in vivo and caution against the widespread clinical application of miRNAs and miRNA inhibitors until the basis of these complexities is more fully understood. mRNAs were collected from 3 miR-7 treated, 2 miR-128 treated , and 3 negative control miRNA treated HEY ovarian cancer cell samples. The mRNA expression pattern was compared between the miR-7 treated cells and the negative control treated cells, and separately between the miR-128 treated cells and the negative control treated cells using the Affymetrix U133 Plus 2.0 3' expression array.