Project description:Genomic DNA is isolated from spleen (RUNX1 model and normal control) and bone marrow (NHD13 model and normal control). We used MCAM to identify genes that have methylation changes. Two-condition experiment, MDS model mouse vs. normal control.
Project description:Genomic DNA is isolated from bone marrow (MDS patient) and whole blood (normal control). We used MCAM to identify genes that have methylation changes. Two-condition experiment, MDS patient vs. normal control.
Project description:The myelodysplastic syndrome (MDS) is a clonal hematologic disorder that frequently evolves to acute myeloid leukemia (AML). Its pathogenesis remains unclear, but mutations in epigenetic modifiers are common and the disease often responds to DNA methylation inhibitors. We analyzed DNA methylation in the bone marrow and spleen in two mouse models of MDS/AML, the NUP98-HOXD13 (NHD13) mouse and the RUNX1 mutant mouse model. Methylation array analysis showed an average of 512/3445 (14.9%) genes hypermethylated in NHD13 MDS, and 331 (9.6%) genes hypermethylated in RUNX1 MDS. Thirty-two percent of genes in common between the two models (2/3 NHD13 mice and 2/3 RUNX1 mice) were also hypermethylated in at least two of 19 human MDS samples. Detailed analysis of 41 genes in mice showed progressive drift in DNA methylation from young to old normal bone marrow and spleen; to MDS, where we detected accelerated age-related methylation; and finally to AML, which markedly extends DNA methylation abnormalities. Most of these genes showed similar patterns in human MDS and AML. Repeat element hypomethylation was rare in MDS but marked the transition to AML in some cases. Our data show consistency in patterns of aberrant DNA methylation in human and mouse MDS and suggest that epigenetically, MDS displays an accelerated aging phenotype.
Project description:Genomic DNA is isolated from spleen (RUNX1 model and normal control) and bone marrow (NHD13 model and normal control). We used MCAM to identify genes that have methylation changes.
Project description:Genomic DNA is isolated from bone marrow (MDS patient) and whole blood (normal control). We used MCAM to identify genes that have methylation changes.
Project description:CD5-positive (CD5+) diffuse large B-cell lymphoma (DLBCL) has a poor prognosis and high incidence of central nervous system (CNS) relapse, even in the rituximab era. To determine the gene expression profile of CD5+ DLBCL, total RNA from 90 patients with DLBCL, including 33 CD5+ DLBCL and 57 CD5-negative (CD5-) DLBCL patients, was examined using Agilent human oligo microarrays. These cases were separated into 78 activated B-cell-like (ABC) DLBCLs and 12 germinal center B-cell-like (GCB) DLBCLs. All cases of CD5+ DLBCL were classified as ABC DLBCLs. The classifier based on gene expression used in a supervised analysis correctly identified CD5 expression in the DLBCL and ABC DLBCL samples. The gene most relevant to CD5 expression was SH3BP5. The enriched GO categories in the CD5+ ABC DLBCL signature gene set were multicellular organismal signaling, transmission of nerve impulse, and synaptic transmission. This present study, which includes the largest reported number of patients with CD5+ DLBCL, confirmed that most CD5+ DLBCLs are ABC DLBCLs, suggesting that therapeutic strategies for ABC DLBCL may be effective for the treatment of CD5+ DLBCL. Our CD5+ ABC DLBCL signature gene set may provide insights into the cause of the high frequency of CNS relapse in CD5+ DLBCL. This present study involved 90 cases (33 patients with CD5+ DLBCL and 57 with CD5- DLBCL) of de novo consecutive DLBCL diagnosed at Mie University Hospital with available frozen biopsy specimens and total RNA samples. Lymphoma tissue RNA from 90 patients was extracted for target preparation and hybridization onto Agilent microarrays. The expression of CD5 in tumor cells was confirmed by means of immunohistochemistry using frozen sections.
Project description:Leaf senescence is the final developmental process that includes the mobilization of nutrients from old leaves to newly growing tissues. The progression of leaf senescence requires dynamic but coordinated changes of gene expression. Although several transcription factors (TFs) are known to be involved in both negative and positive modes of regulation of leaf senescence, detailed mechanisms that underlie the progression of leaf senescence are largely unknown. We report here that the class II ERF transcriptional repressors are controlled by proteasome and regulate the progression of leaf senescence in Arabidopsis. Since we had previously demonstrated that NtERF3, a model of tobacco class II ERFs, specifically interacts with a ubiquitin-conjugating enzyme, we examined the stability of NtERF3 and found that bacterially produced NtERF3 was rapidly degraded by plant protein extracts in vitro. Whereas NtERF3 accumulation was low in plants, it was increased by treatment with a proteasome inhibitor. Arabidopsis class II ERFs, namely, AtERF4 and AtERF8, were also controlled by proteasome and stabilized by aging of plants. The transgenic plants in which NtERF3, AtERF4, and AtERF8 were individually expressed under the control of the 35S promoter exhibited the precocious leaf senescence. Our microarray and RT-PCR analyses revealed that AtERF4 regulated expression of genes involving in various stress responses and leaf senescence. In contrast, aterf4 aterf8 mutant exhibited delayed leaf senescence. Taken together, we present the important role of class II ERFs in the regulation of leaf senescence. Transcriptomes of 35S:AtERF4-HA and 35S:NLS-GFP-HA (control) Arabidopsis two-weeks seedling were compared.
Project description:The goal is to compare the DNA methylation patterns between ARH and PVH to examine to what extent DNA methylation is region specific in genome scale. ARH and PVH were micro-dissected from mice brains. Each 7 pieces of ARH or PVH were pooled and used for DNA methylation comparison by methylation specific amplification microarray (MSAM). As a brief description of the MSAM: 500ng of genomic DNA was serially digested with SmaI and XmaI followed by an adaptor ligation and adaptor mediated PCR amplification and then cohybridization. Two-color cohybridizations were performed as paired comparison of PVH vs. ARH with two biological replicates including dye swap.
Project description:Transcriptional profiling of HCV core transgenic mice liver comparing nontransgenic mice liver or HCV core transgenic mice liver with various core expression levels. Exp I: Double transgenic mice DTM with high core vs single transgenic mice STM (triplicate); ExpII: DTM with modest core vs STM (triplicate); ExpIII: DTM with modest core vs DTM with high core (triplicate).