Project description:The myelodysplastic syndrome (MDS) is a clonal hematologic disorder that frequently evolves to acute myeloid leukemia (AML). Its pathogenesis remains unclear, but mutations in epigenetic modifiers are common and the disease often responds to DNA methylation inhibitors. We analyzed DNA methylation in the bone marrow and spleen in two mouse models of MDS/AML, the NUP98-HOXD13 (NHD13) mouse and the RUNX1 mutant mouse model. Methylation array analysis showed an average of 512/3445 (14.9%) genes hypermethylated in NHD13 MDS, and 331 (9.6%) genes hypermethylated in RUNX1 MDS. Thirty-two percent of genes in common between the two models (2/3 NHD13 mice and 2/3 RUNX1 mice) were also hypermethylated in at least two of 19 human MDS samples. Detailed analysis of 41 genes in mice showed progressive drift in DNA methylation from young to old normal bone marrow and spleen; to MDS, where we detected accelerated age-related methylation; and finally to AML, which markedly extends DNA methylation abnormalities. Most of these genes showed similar patterns in human MDS and AML. Repeat element hypomethylation was rare in MDS but marked the transition to AML in some cases. Our data show consistency in patterns of aberrant DNA methylation in human and mouse MDS and suggest that epigenetically, MDS displays an accelerated aging phenotype.
Project description:Genomic DNA is isolated from spleen (RUNX1 model and normal control) and bone marrow (NHD13 model and normal control). We used MCAM to identify genes that have methylation changes.
Project description:Genomic DNA is isolated from bone marrow (MDS patient) and whole blood (normal control). We used MCAM to identify genes that have methylation changes.
Project description:Genomic DNA is isolated from spleen (RUNX1 model and normal control) and bone marrow (NHD13 model and normal control). We used MCAM to identify genes that have methylation changes. Two-condition experiment, MDS model mouse vs. normal control.
Project description:Genomic DNA is isolated from bone marrow (MDS patient) and whole blood (normal control). We used MCAM to identify genes that have methylation changes. Two-condition experiment, MDS patient vs. normal control.
Project description:The use of low dose hypomethylating agents for patients with myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (AML) has had made a significant impact. In the past, therapies for these diseases were limited and patients who elected to receive treatment were subject to highly toxic, inpatient chemotherapeutics, which were often ineffective. In the era of hypomethylating agents (azacitidine and decitabine), a patient with high grade MDS or AML with multilineage dysplasia can be offered the alternative of outpatient, relatively low-toxicity therapy. Despite the fact that CR (CR) rates to such agents remain relatively low at 15-20%, a much larger percentage of patients will have clinically significant improvements in hemoglobin, platelet, and neutrophil counts while maintaining good outpatient quality of life. As our clinical experience with azanucleotides expands, questions regarding patient selection, optimal dosing strategy, latency to best response and optimal duration of therapy following disease progression remain, but there is no question that for some patients these agents offer, for a time, an almost miraculous clinical benefit. Ongoing clinical trials in combination and in sequence with conventional therapeutics, with other epigenetically active agents, or in conjunction with bone marrow transplantation continue to provide promise for optimization of these agents for patients with myeloid disease. Although the mechanism(s) responsible for the proven efficacy of these agents remain a matter of some controversy, activity is thought to stem from induction of DNA hypomethylation, direct DNA damage, or possibly even immune modulation; there is no question that they have become a permanent part of the armamentarium against myeloid neoplasms.
Project description:Growth factor independence 1 (GFI1) is a DNA binding zinc finger protein, which can mediate transcriptional repression mainly by recruiting histone-modifying enzymes to its target genes. GFI1 plays important roles in hematopoiesis, in particular by regulating both the function of hematopoietic stem- and precursor cells and differentiation along myeloid and lymphoid lineages. In recent years, a number of publications have provided evidence that GFI1 is involved in the pathogenesis of acute myeloid leukemia (AML), its proposed precursor, myelodysplastic syndrome (MDS), and possibly also in the progression from MDS to AML. For instance, expression levels of the GFI1 gene correlate with patient survival and treatment response in both AML and MDS and can influence disease progression and maintenance in experimental animal models. Also, a non-synonymous single nucleotide polymorphism (SNP) of GFI1, GFI1-36N, which encodes a variant GFI1 protein with a decreased efficiency to act as a transcriptional repressor, was found to be a prognostic factor for the development of AML and MDS. Both the GFI1-36N variant as well as reduced expression of the GFI1 gene lead to genome-wide epigenetic changes at sites where GFI1 occupies target gene promoters and enhancers. These epigenetic changes alter the response of leukemic cells to epigenetic drugs such as HDAC- or HAT inhibitors, indicating that GFI1 expression levels and genetic variants of GFI1 are of clinical relevance. Based on these and other findings, specific therapeutic approaches have been proposed to treat AML by targeting some of the epigenetic changes that occur as a consequence of GFI1 expression. Here, we will review the well-known role of Gfi1 as a transcription factor and describe the more recently discovered functions of GFI1 that are independent of DNA binding and how these might affect disease progression and the choice of epigenetic drugs for therapeutic regimens of AML and MDS.
Project description:One of the traits of cancer cells is abnormal DNA methylation patterns. The idea that age-related epigenetic changes may partially explain the increased risk of cancer in the elderly is based on the observation that aging is also accompanied by comparable changes in epigenetic patterns. Lineage bias and decreased stem cell function are signs of hematopoietic stem cell compartment aging. Additionally, aging in the hematopoietic system and the stem cell niche have a role in hematopoietic stem cell phenotypes linked with age, such as leukemia and lymphoma. Understanding these changes will open up promising pathways for therapies against age-related disorders because epigenetic mechanisms are reversible. Additionally, the development of high-throughput epigenome mapping technologies will make it possible to identify the "epigenomic identity card" of every hematological disease as well as every patient, opening up the possibility of finding novel molecular biomarkers that can be used for diagnosis, prediction, and prognosis.
Project description:DNA of 124 normal mucosa biopsies from cecum (proximal) and sigmoid (distal) colon obtained at baseline (t1) and after 10years (t2) from 31 screening females was subjected to measure DNA methylation profiles by Illumina Infinium EPIC Human Methylation BeadChip across approximately 850,000 CpGs.