Expression data from PML-RARα transgenic mouse APL(acute promyelocyte leukemia) cells
Ontology highlight
ABSTRACT: The differentiation of leukemia stem cells (LSCs) is generally regarded as a one-way alterative process to self-renewal. However, how differentiation impacts LSC stemness has largely been unexplored. Here we show that before reaching terminal differentiation (TD), apical LSCs of mouse acute promyelocytic leukemia passed through a partial differentiation (PD) stage, wherein the leukemia cells re-initiated leukemia via de-differentiation albeit at a reduced rate. Notably, while retinoic acid (RA) preferentially drove the transition of LSC to PD, monocytic Irf8 skewed PD cells to terminal maturation over de-differentiation and/or expansion. Remarkably, the combined use of RA and Irf8 induction depleted the total leukemogenic potential, which indicates that discrete stage- or lineage-specific mechanisms elaborate a step-wise LSC differentiation. We used microarrays to detail the global programme of gene expression indicating the molecular mechanisms unerlying the the process of LSC step-wise differentiation. Retroviral GFP-labled mouse APL cells (bone marrow sample) were repopulated in vivo through transplantation into syngenic recipients. At the proper time points, the GFP positive APL bone marrow cells were collected and sorted for UNSC, UNPD and UNTD samples through FACS. RA-PD and RA-TD cells were sorted from bone marrow tissue treated with ATRA (all trans retinoic acid) for 5 days. The freshly isolated samples were then lysed for RNA extration. Each sample had two biological replicates.
ORGANISM(S): Mus musculus
SUBMITTER: Jiang Zhu
PROVIDER: E-GEOD-46094 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA