Project description:We show that traumatic stress experienced by males in early postnatal life impairs memory in their offspring, blocks long-term potentiation (LTP) and favors long-term depression (LTD). These effects are accompanied by suppression of key molecular pathways involved in neuronal plasticity both at rest and after acute stress. Male mice were exposed to chronic traumatic stress in early postnatal life and were later bred to naM-CM-/ve females to produce second-generation offspring. Memory performance was evaluated in the offspring, and synaptic plasticity was examined in the hippocampus and the amygdala, brain areas important for memory formation. The two groups tested were 1: offspring of fathers which were stressed (MSUS - maternal separation unpredictable stress) and 2: offspring of non-stressed fathers (control). Genome-wide gene expression in hippocampus of these two groups was assessed at rest and after acute stress (this study).
Project description:We show that traumatic stress experienced by males in early postnatal life impairs memory in their offspring, blocks long-term potentiation (LTP) and favors long-term depression (LTD). These effects are accompanied by suppression of key molecular pathways involved in neuronal plasticity both at rest and after acute stress. Male mice were exposed to chronic traumatic stress in early postnatal life and were later bred to naM-CM-/ve females to produce second-generation offspring. Memory performance was evaluated in the offspring, and synaptic plasticity was examined in the hippocampus and the amygdala, brain areas important for memory formation. The two groups tested were 1: offspring of fathers which were stressed (MSUS - maternal separation unpredictable stress) and 2: offspring of non-stressed fathers (control). Genome-wide gene expression in hippocampus of these two groups was assessed at rest (this study) and after acute stress.
Project description:Using a 3'-tiling microarray covering the whole F. graminearum genes, we carried out genome-wide expression analyses of both a wild type and a FgVelB deletion strainn of F. graminearum at a sexual stage (3 days after perithecial induction on carrot agar) Our study is the first report elucidating regulatory pathways controlled by FgVelB in Fusarium graminearum. A total of 4 chips were used for microarray. Total RNAs were extracted from perithecia and/or ground mycelia formed on carrot agar cultures of a self-fertile wild-type and a self-sterile FgVelB-deleted strain of F. graminearum with two biological replicates.
Project description:The study determined whether there were gender differences in the <br>expression of hippocampal genes in adult rats in association with dissimilarity <br>in their behavior, and how these were affected by prenatal stress. Pregnant <br>Wistar rats were subjected to varied stress once daily on days 14-20 of <br>gestation.<br>
Project description:We studied maternal low protein diet (LPD) during pregnancy/lactation in mice. This affected behavioral responses to acute stress in the offspring. We therefore investigated the transcriptome-wide changes following 15 min forced swim, to identify possible immediate early genes affected by perinatal LPD.
Project description:Obesity is tightly associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). However, the molecular mechanisms of obesity-induced fatty liver remain largely unknown.In order to identify genes that are potentially involved in dysfunctional hepatic lipid homeostasis in obesity, we performed a clustering analysis of Affymetrix arrays,which revealed that a number of mRNAs were dys-regulated in the livers of mice fed a high-fat diet (HFD), compared with mice fed a normal chow diet (ND). To identify genes that are potentially involved in dysfunctional hepatic lipid homeostasis in obesity, male C57BL/6 mice aged 8 weeks were fed a normal diet (ND) or high-fat-diet (HFD) containing 60 Kcal% of fat for 12 weeks. Then mice were sacrificed and total RNAs were isoloated from hepatic tissues. Affymetrix array hybridisation and scanning were performed using Mouse Genome 430 2.0 chips.Total RNA samples obtained from six mice per group (ND and HFD) and pooled by each of the two were used for microarray analysis.
Project description:Protein malnutrition promotes hepatic steatosis, decreases insulin-like growth factor (IGF)-I production, and retards growth. In order to identify new molecules involved in such changes, we conducted DNA microarray analysis for liver samples of rats fed isoenergetic low protein diet for 8 hours, and identified fibroblast growth factor 21 (Fgf21) as one of the most strongly up-regulated genes under conditions of acute protein malnutrition (P<0.05, FDR<0.001). In addition, amino acid deprivation from the culture media increased Fgf21 mRNA levels in rat liver-derived RL-34 cells (P<0.01). Thus, it was suggested that amino acid limitation directly increases Fgf21 expression. FGF21 is a polypeptide hormone that regulates glucose and lipid metabolism. Using transgenic mice, FGF21 has also been shown to promote a growth hormone-resistant state and suppress IGF-I. Therefore, to further determine whether the up-regulation of Fgf21 under protein malnutrition causes hepatic steatosis and growth retardation following decrease in IGF-I, we fed isoenergetic low protein diet to Fgf21-knockout (KO) mice. Fgf21-KO did not rescue growth retardation and reduced plasma IGF-I concentration of mice fed the low-protein diet. Meanwhile, Fgf21-KO mice showed greater epididymal white adipose tissue weight as well as hepatic triglyceride and cholesterol levels under protein malnutrition (P<0.05). Taken together, we showed that protein deprivation directly increases Fgf21 expression. However, growth retardation and decreased IGF-I were not mediated by increased FGF21 expression under protein malnutrition. Furthermore, up-regulated FGF21 rather appears to have a protective effect against obesity and hepatic steatosis in protein malnourished animals. Livers of rats from 2 groups (control (15P) or low-protain (5P) diet fed groups), total of 6 samples (3 replicates for each group) were analyzed.
Project description:Acute stress provides many beneficial effects whereas chronic stress contributes to a variety of human health problems. The objective of this study was to use a rodent model to uncover hippocampal gene signatures associated with prolonged chronic stress which could potentially serve as biomarkers and therapeutic targets for early diagnosis and pharmacological intervention for stress induced disease. Mice were subjected to restraint stress over 7 consecutive days and gene expression changes in the hippocampus were analyzed at 3, 12 and 24 hours following the final restraint treatment. Data indicated that mice exposed to chronic restraint stress exhibit a differential gene expression profile compared to non-stressed controls. The greatest differences were observed 12 and 24 hrs following the final stress test.
Project description:Expression Data of Barley Crown and Growing Point Tissue Under Salt Stress abd JA treatment Experiment Overall Design: Barley genotype Golden Promise was used for expression anlaysis using the tissue from crown and growing point under control, salt stressed, JA treatment and JA pretreatment followed by salt stress