Expression data from Ribonuclease Inhibitor (RI/Rnh1) deficient E9.5 yolksac
Ontology highlight
ABSTRACT: Ribonuclease Inhibitor (RI also known as Rnh1) is a 50 kDa, ubiquitously expressed leucine-rich repeat (LRR) protein. It is localized in cytosol and binds to pancreatic-type ribonucleases and inhibit their function. However the entire biological role for Rnh1 is unknown. We generated Rnh1 knock out mice by homologous recombination. Here we studied differential gene expression from wild type (Rnh1 +/+), Heterozygous (Rnh1+/-) and Knock out (Rnh1-/-) yolk sacs isolated from embryonic day 9.5 (E9.5). We used microarrays to study global gene expression regulated by Rnh1 in yolk sacs. Total RNA was isolated from E9.5 yolk sacs of Rnh1 Wild type, heterozygous and knock out.
Project description:Ribonuclease Inhibitor (RI also known as Rnh1) is a 50 kDa, ubiquitously expressed leucine-rich repeat (LRR) protein. It is localized in cytosol and binds to pancreatic-type ribonucleases and inhibit their function. However the entire biological role for Rnh1 is unknown. We generated Rnh1 knock out mice by homologous recombination. Here we studied differential gene expression from wild type (Rnh1 +/+), Heterozygous (Rnh1+/-) and Knock out (Rnh1-/-) yolk sacs isolated from embryonic day 9.5 (E9.5). We used microarrays to study global gene expression regulated by Rnh1 in yolk sacs.
Project description:E9.5 yolk sacs were collected from wild type (CD1) and Cdx-mutant (DKO) embryos and processed for RNA-sequencing to identify Cdx-dependent changes in gene expression
Project description:Summary: Ribonuclease Inhibitor (RI also known as Rnh1) is a 50 kDa, ubiquitously expressed leucine-rich repeat (LRR) protein. It is localized in cytosol and binds to pancreatic-type ribonucleases and inhibit their function. However, the entire biological role for Rnh1 is unknown. We generated RNH1 knock out K562 cells by CRISPR/Cas9 method. Here we studied differential gene expression from wild type and RNH1 knock out K562 cells by RNA-Seq analysis. Overall design: Total RNA was isolated from wild type and RNH1 deficient K562 cells.
Project description:To identify genes critical for vascular development, we generated mice where ETV2 is inactivated in FLK1+ cells by a loxP-Cre recombination approach. Results provide a detailed insight into the function of ETV2 in emrbyonic vasculare formation. Total RNA obtained from E9.5 yolk sacs from Flk1Cre;ETV2 CKO and control mice.
Project description:Primitive erythropoiesis in the mouse yolk sac is followed by definitive erythropoiesis resulting in adult erythrocytes. In comparison to definitive erythropoiesis little is known about the genes that control the embryonic erythroid program. The purpose of this study was to generate a profile of mouse embryonic yolk sac erythroid cells and identify novel regulatory genes differentially expressed in erythroid compared to non-erythroid (epithelial cells). The identification of these genes will contribute to a greater understanding of how the primitive erythroid program is controlled. This work will have clinical implications for treating sickle cell anemia and β-thalassemia. Activating genes in adult erythroid cells that increase embryonic or fetal globin gene expression may be a therapeutic approach to treat individuals with these disorders. Experiment Overall Design: Embryonic day 9.5 (E9.5) yolk sacs were dissected from the embryos of timed-pregnant FVB/N mice. These tissues were frozen in OCT media and 8-micron frozen sections were obtained. Laser capture microdissection (LCM) was used to isolate primitive erythroid precursors and epithelial cells from these E9.5 yolk sac frozen sections using 2 to 4 yolk sacs from 2 different litters per biological replicate. Paired erythroid and epithelial samples were collected from the same microscope slides. Total RNA was isolated from 4 different pairs of erythroid and epithelial samples and hybridized to Affymetrix 430 A 2.0 microarrays.
Project description:The Krüppel-like factors, KLF1 and KLF2, positively regulate embryonic β-globin expression, and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1-/-KLF2-/- double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1-/- and KLF1-/-KLF2-/-. Among these, c-myc emerged as a central node in the most significant gene network. c-myc expression is synergistically regulated by KLF1 and KLF2, and both factors bind the c-myc promoters. To characterize the role of c-myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia analogous to KLF1-/-KLF2-/-. In the absence of c-myc, circulating erythroid cells do not show the normal increase in α- and β-like globin expression, but interestingly, have accelerated erythroid maturation, between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate c-myc, to control the primitive erythropoietic program. Timed-pregnant KLF1+/-, KLF1+/- KLF2+/- females were anesthetized and sacrificed. E9.5 yolk sacs were dissected from the embryo, cryoprotected in 20% sucrose in PBS and frozen in OCT media. A small portion of the embryo tail was used for PCR genotyping. Eight micron frozen yolk sac sections were obtained and laser capture microdissection (LCM) was used to isolate primitive erythroid precursors. For each biological replicate, 2 to 4 yolk sacs from 2 different litters were used. Total RNA was isolated from 8 different wild-type, 3 KLF1-/-, 3 KLF1-/- KLF2-/- erythroid samples and hybridized to Affymetrix 430 A 2.0 microarrays.
Project description:KLF2 is a Krüppel-like zinc-finger transcription factor required for blood vessel, lung, T-cell, and erythroid development. KLF2-/- mice die by embryonic day 14.5 (E14.5), due to hemorrhaging and heart failure. Embryonic -like globin gene expression is reduced in KLF2-/- embryos compared to wildtype (WT), and E10.5 erythroid cells exhibit abnormal morphology. Other KLF2 target genes were identified by comparing E9.5 KLF2-/- and WT yolk sac erythroid cells, using laser capture microdissection and microarray assays. One hundred and ninety-six genes exhibited significant differences in expression; eighty-nine of these are downregulated in KLF2-/- compared to WT. Genes involved in cell migration, differentiation and development are over-represented in the KLF2-regulated gene list. Previously identified erythroid-enriched regulatory genes such as reelin, adenylate cyclase 7, cytotoxic T lymphocyte-associated protein 2 alpha, and CD24a antigen are downregulated in KLF2-/- compared to WT. SOX2, a pluripotency factor in ES cells, is also a KLF2 target in embryonic erythroid cells. We investigated whether reelin, which has an established role in neuronal migration and proliferation, has a role in embryonic erythropoiesis. Luciferase reporter assays demonstrated that KLF2 directly transactivates the reelin promoter, but reelin mutant mice have no apparent abnormalities in embryonic erythroid morphology or globin gene expression. Timed-pregnant KLF2+/- females were anesthetized and sacrificed. E9.5 yolk sacs were dissected from the embryo, cryoprotected in 20% sucrose in PBS and frozen in OCT media. A small portion of the embryo tail was used for PCR genotyping. Eight micron KLF2-/- frozen yolk sac sections were obtained and laser capture microdissection (LCM) was used to isolate primitive erythroid precursors. For each biological replicate, 2 to 4 yolk sacs from 2 different litters were used. Total RNA was isolated from 4 different KLF2-/- erythroid samples and hybridized to Affymetrix 430 A 2.0 microarrays
Project description:Using classical overexpression/knockout studies, we find that miR-126 regulates the duration of the primitive erythroid program, and confirm this in embryonic miR-126-/- yolk sacs.
Project description:Transcriptomic analyses of yolk sacs from mouse embryos at E8.5 was performed to assess the dosage dependent effects of varying Etv2 dosage on early endothelial and hematopoietic development.