Interferon gamma down-regulates miR-3473b to promote macrophage activation
Ontology highlight
ABSTRACT: Macrophages are major effector cells and antigen presenting cells of the innate immune system and classical activation of macrophage function requires interferon–γ (IFN-γ) pretreatment (priming) and TLR stimuli, which promotes inflammatory responses though high levels of pro-inflammatory cytokines and lower level of the anti-inflammatory cytokines, resulting in microbicidal and tumoricidal effect. However, the underlying molecular mechanism of IFN-γ priming remains elusive. In this study, we explored the effect of IFN-γ on macrophages at miRNA level and discovered that miR-3473b, which was down-regulated after IFN-γ priming, could attenuate the priming effect of IFN-γ. Molecular study revealed that miR-3473b promoted Akt/GSK3 signaling and IL-10 production through directly targeting PTEN to suppress inflammatory response and tumor-suppressing capability of macrophages. In summary, our data demonstrate that IFN-γ beef up macrophage inflammatory response and tumor suppressing capacity by limiting miR-3473b-mediated PTEN suppression. Our work identified an IFN-γ/miR-3473b/Akt axis in the regulation of macrophage function and activation. the assay was performed with 5 μg total RNA samples from both normal BMM (labeled by Cy3) and BMM primed by IFN-γ (100U/ml) for 4 h(labeled by Cy5), normal BMM serves as control.
ORGANISM(S): Mus musculus
SUBMITTER: PIN WANG
PROVIDER: E-GEOD-50569 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA