Project description:Synergistic activation of inflammatory cytokine genes by IFN-gamma and TLR signaling is important for innate immunity and inflammatory disease pathogenesis, but underlying mechanisms are not known. By obtaining over three billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of human primary monocytes under IFN-gamma-priming and TLR stimulation. We found that IFN-gamma induced genome-wide sustained occupancy of STAT1, IRF-1 and associated histone acetylation at TSS-proximal and distal regulatory elements and provided a synergy mechanism whereby IFN-gamma creates a primed chromatin environment to augment TLR-induced gene transcription, which suggest therapeutic approaches that selectively target priming mechanisms. Examination and comparison of the changes in TF binding and histone modification in human primary monocytes under different conditions.
Project description:Macrophages are major effector cells and antigen presenting cells of the innate immune system and classical activation of macrophage function requires interferon–γ (IFN-γ) pretreatment (priming) and TLR stimuli, which promotes inflammatory responses though high levels of pro-inflammatory cytokines and lower level of the anti-inflammatory cytokines, resulting in microbicidal and tumoricidal effect. However, the underlying molecular mechanism of IFN-γ priming remains elusive. In this study, we explored the effect of IFN-γ on macrophages at miRNA level and discovered that miR-3473b, which was down-regulated after IFN-γ priming, could attenuate the priming effect of IFN-γ. Molecular study revealed that miR-3473b promoted Akt/GSK3 signaling and IL-10 production through directly targeting PTEN to suppress inflammatory response and tumor-suppressing capability of macrophages. In summary, our data demonstrate that IFN-γ beef up macrophage inflammatory response and tumor suppressing capacity by limiting miR-3473b-mediated PTEN suppression. Our work identified an IFN-γ/miR-3473b/Akt axis in the regulation of macrophage function and activation. the assay was performed with 5 μg total RNA samples from both normal BMM (labeled by Cy3) and BMM primed by IFN-γ (100U/ml) for 4 h(labeled by Cy5), normal BMM serves as control.
Project description:Macrophages are major effector cells and antigen presenting cells of the innate immune system and classical activation of macrophage function requires interferon–γ (IFN-γ) pretreatment (priming) and TLR stimuli, which promotes inflammatory responses though high levels of pro-inflammatory cytokines and lower level of the anti-inflammatory cytokines, resulting in microbicidal and tumoricidal effect. However, the underlying molecular mechanism of IFN-γ priming remains elusive. In this study, we explored the effect of IFN-γ on macrophages at miRNA level and discovered that miR-3473b, which was down-regulated after IFN-γ priming, could attenuate the priming effect of IFN-γ. Molecular study revealed that miR-3473b promoted Akt/GSK3 signaling and IL-10 production through directly targeting PTEN to suppress inflammatory response and tumor-suppressing capability of macrophages. In summary, our data demonstrate that IFN-γ beef up macrophage inflammatory response and tumor suppressing capacity by limiting miR-3473b-mediated PTEN suppression. Our work identified an IFN-γ/miR-3473b/Akt axis in the regulation of macrophage function and activation.
Project description:Synergistic activation of inflammatory cytokine genes by IFN-gamma and TLR signaling is important for innate immunity and inflammatory disease pathogenesis, but underlying mechanisms are not known. By obtaining over three billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of human primary monocytes under IFN-gamma-priming and TLR stimulation. We found that IFN-gamma induced genome-wide sustained occupancy of STAT1, IRF-1 and associated histone acetylation at TSS-proximal and distal regulatory elements and provided a synergy mechanism whereby IFN-gamma creates a primed chromatin environment to augment TLR-induced gene transcription, which suggest therapeutic approaches that selectively target priming mechanisms.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:To investigate the effects of pathological IFN-γ stimulation on neurons in the context of subsequent activation, we established cell cultures of primary mouse neurons receiving pathological priming or no priming. We then performed RNA-Seq on these cells after vehicle, physiological, and pathological IFN-γ restimulation.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
Project description:PurposeWe investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level.MethodsSNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively.ResultsSix of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes.ConclusionsThere is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.