Project description:Thousands of enhancers are characterized in the human genome, yet few have been shown important in cancer. Inhibiting oncokinases, such as EGFR, ALK, HER2, and BRAF, is a mainstay of current cancer therapy but is hindered by innate drug resistance mediated by upregulation of the HGF receptor, MET. The mechanisms mediating such genomic responses to targeted therapy are unknown. Here, we identify lineage-specific MET enhancers for multiple common tumor types, including a melanoma lineage-specific MET enhancer that displays inducible chromatin looping and MET gene induction upon BRAF inhibition. Epigenomic analysis demonstrated that the melanocyte-specific transcription factor, MITF, mediates this enhancer function. Targeted genomic deletion (<7bp) of the MITF motif within the MET enhancer suppressed inducible chromatin looping and innate drug resistance, while maintaining MITF-dependent, inhibitor-induced melanoma cell differentiation. Epigenomic analysis can thus guide functional disruption of regulatory DNA to decouple pro- and anti-oncogenic functions of tumor lineage-enriched transcription factors mediating innate resistance to oncokinase therapy. COLO829 human melanoma cell line harboring the BRAFV600E mutation was treated with BRAF inhibtior PLX4032 (Vemurafenib) and/or a hairpin against MITF
Project description:Thousands of enhancers are characterized in the human genome, yet few have been shown important in cancer. Inhibiting oncokinases, such as EGFR, ALK, HER2, and BRAF, is a mainstay of current cancer therapy but is hindered by innate drug resistance mediated by upregulation of the HGF receptor, MET. The mechanisms mediating such genomic responses to targeted therapy are unknown. Here, we identify lineage-specific MET enhancers for multiple common tumor types, including a melanoma lineage-specific MET enhancer that displays inducible chromatin looping and MET gene induction upon BRAF inhibition. Epigenomic analysis demonstrated that the melanocyte-specific transcription factor, MITF, mediates this enhancer function. Targeted genomic deletion (<7bp) of the MITF motif within the MET enhancer suppressed inducible chromatin looping and innate drug resistance, while maintaining MITF-dependent, inhibitor-induced melanoma cell differentiation. Epigenomic analysis can thus guide functional disruption of regulatory DNA to decouple pro- and anti-oncogenic functions of tumor lineage-enriched transcription factors mediating innate resistance to oncokinase therapy. MITF ChIP-seq was performed in primary human melanocytes with overexpression of BRAFV600E or a lentiviral control (RFP), and in COLO829 melanoma cells treated with DMSO, or PLX4032
Project description:Microglia, the innate immune cells of the central nervous system, perform critical inflammatory and non-inflammatory functions to maintain homeostasis and normal neural function. However in Alzheimer’s disease (AD), these beneficial functions become progressively impaired, contributing to synapse and neuron loss and cognitive impairment. The inflammatory cyclooxygenase-PGE2 pathway, including the PGE2 receptor EP2, is implicated in AD development, both in human epidemiology and in transgenic models of AD. To test the transcriptional responses of EP2-deficient microglia to Aβ in vivo, we used mice in which the EP2 receptor is conditionally deleted in microglia using the CD11b-Cre transgene and floxed alleles of the EP2 gene. By injecting these mice with Aβ ICV and isolating microglia from the brains, we have been able to establish the transcriptional response of microglia to Aβ in vivo and test how EP2 deletion in microglia affects this response. 8 month-old C57BL/6 mice, of the genotype CD11b-Cre; EP2+/+ or CD11b-Cre; EP2lox/lox, were injected I.C.V. with either Aβ or vehicle. 48 hours after injection, the mice were sacrificed and transcardially perfused with cold heparinized 0.9% NaCl. Brains were then removed from the mice and pooled, two brains of the same genotype per sample, to ensure adequate cell and RNA yield. The brains were then enzymatically dissociated for microglia isolation using the Neural Tissue Dissociation Kit (P), MACS Separation Columns (LS), and magnetic CD11b Microbeads from Miltenyi Biotec according to the manufacturer's protocol. Immediately after isolating the microglia, RNA was extracted from the cells for microarray analysis.
Project description:This SuperSeries is composed of the following subset Series: GSE33092: Oncogenic BRAFV600E remodels the melanocyte transcriptome and induces BLNCR1 to regulate melanoma cell migration [HT-seq] GSE37132: Oncogenic BRAFV600E remodels the melanocyte transcriptome and induces BLNCR1 to regulate melanoma cell migration [Affymetrix] Refer to individual Series
Project description:We assessed the effect of RNAi-mediated MAP kinase cascade signaling blockade in primary human keratinocytes. Two sets of siRNA targeting different regions of the Erk1/2 genes were used, enabling identification of off-target siRNA effects. Primary human keratinocytes were electroporated with scrambled control siRNA, a pair of siRNA oligomers against Erk1 and Erk2 (set A), or an independent pair of siRNA oligomers against Erk1 and Erk2 (set B). Four days after electroporation, RNA was harvested. Three biological replicates were performed for each of the three siRNA groups.
Project description:A persistent and non-resolving inflammatory response to accumulating A? peptide species is a cardinal feature in the development of Alzheimer's disease (AD). In response to accumulating A? peptide species, microglia, the innate immune cells of the brain, generate a toxic inflammatory response that accelerates synaptic and neuronal injury. Many pro-inflammatory signaling pathways are linked to progression of neurodegeneration. However, endogenous anti-inflammatory pathways capable of suppressing A?-induced inflammation represent a relatively unexplored area. Here we hypothesized that signaling through the prostaglandin-E2 (PGE2) EP4 receptor potently suppresses microglial inflammatory responses to A?42 peptides. In cultured microglial cells, EP4 stimulation attenuated levels of A?42-induced inflammatory factors and potentiated phagocytosis of A?42. Microarray analysis was performed and demonstrated that EP4 stimulation broadly opposed A?42-driven gene expression changes in microglia, with enrichment for targets of IRF1, IRF7, and NF-?B transcription factors. Primary microglia were isolated from the brains of postnatal day 7 C57BL/6J mouse pups using the Neural Tissue Dissociation Kit (P), MACS Separation Columns (LS), and magnetic CD11b Microbeads from Miltenyi Biotec (Auburn, CA). Microglia from three separate litters of pups were maintained as three independent biological replicates for each treatment. After being cultured for three days, microglia were treated with oligomeric A?42 (10uM) and/or the specific EP4 agonist AE1-329 (100nM) for 6 hours. These 4 treatment conditions (A? + AE1, A? alone, AE1 alone, and vehicle alone) and 3 independent biological replicates per treatment gave us 12 total samples. After 6 hours of treatment, RNA was isolated from the microglia for microarray analysis.
Project description:The definitive endoderm germ layer is the provenance of multiple internal organs, including the lungs, liver, pancreas and intestines. Molecular events driving initial endoderm germ layer specification and subsequent anterior-posterior patterning of endoderm into distinct organ primordia remain largely cryptic. Through microarray analyses, we captured genome-wide transcriptional dynamics driving successive stages of endoderm development with the intent of identifying novel regulatory genes or diagnostic markers that respectively drive or mark endoderm committment. HES3 human embryonic stem cells (hESCs) were differentiated into highly homogeneous endodermal progenitor populations, and microarray analyses were conducted of six different populations at different tiers of the endodermal lineage hierarchy: undifferentiated hESCs, anterior primitive streak (day 1 of in vitro differentiation), definitive endoderm (day 3) and anterior foregut, posterior foregut or midgut/hindgut patterned endoderm populations (day 7). Additionally, we compared hESCs differentiated using two alternative endoderm induction protocols, serum-based or AFBLy-based differentiation (both day 3 of differentiation).
Project description:NSAIDs (non-steroidal anti-inflammatory drugs) inhibit cyclooxygenase (COX) enzymes and prevent Alzheimer's disease (AD) at preclinical stages in cognitively normal aging populations. We modeled NSAID prevention of memory impairment in AD model mice to identify novel targets of NSAID action. We found that the widely-used NSAID ibuprofen prevented early hippocampus-dependent memory deficits in APP-PS1 mice. We therefore analyzed gene expression in the hippocampus of these mice. We treated male APPSwe-PS1deltaE9 mice (strain originally provided by Dr. David Borchelt and fully back-crossed to a C57BL/6J background) and their wild-type littermates with ibuprofen in chow from 3 to 6 months of age, after which we sacrificed the mice and dissected one hippocampus from each mouse for RNA isolation and microarray analysis. In each genotype-treatment group, we analyzed samples from 5 mice. Note: In our initial analysis, we found that sample GSM1644138, Hippocampus_WT_Con_rep5, was an outlier in overall gene expression. We therefore removed this sample before performing the analysis published in PMID 27190010.
Project description:We developed a simplified flow cytometry strategy in order to discriminate monocytes and macrophages in the lung of C57BL/6 mice. Using this strategy, we identified autofluorescent F4/80+ CD11c+ alveolar macrophages, non-autofluorescent CD64+Ly-6C- interstitial macrophages and Ly-6Chi monocytes residing in the lung of WT mice. A fraction of these Ly-6Chi monocytes corresponded to classical blood monocytes associated with the lung vasculature, but another fraction did not depend on CCR2, the chemokine receptor required for monocytes to egress from the bone marrow, as a population of lung Ly-6Chi monocytes was also present in the lung of Ccr2-/- mice. A remaining question was whether lung monocytes represented a particular population of monocytes that could be distinguishable from the classical CCR2-dependent blood monocytes. To address this issue, we performed a transcriptomic comparison of Ly-6Chi monocytes recovered from flushed lung of WT mice (â60% of CCR2- dependent classical blood monocytes and â40% of lung monocytes) and Ccr2-/- mice (more than 95% of lung monocytes). In addition, we tested whether exposure to TLR ligands would affect interstitial macrophages, and we compared to transcriptome of IM at steady-state and IM 1 week after administration of 50 µg CpG-DNA intratracheally.
Project description:In the context of most induced pluripotent stem (iPS) cell reprogramming methods, heterogeneous populations of nonproductive and staggered productive intermediates arise at different reprogramming time points1-11. Despite recent reports claiming substantially increased reprogramming efficiencies using genetically modified donor cells12,13 prospectively isolating distinct reprogramming intermediates remains an important goal to decipher reprogramming mechanisms. Previous attempts to identify surface markers of intermediate cell populations were based on the assumption that during reprogramming the cells progressively lose donor cell identity and gradually acquire iPS cell properties1,2,7,8,10. Here, we report that iPS cell and epithelial markers, such as SSEA1 and EpCAM, respectively, are not predictive of reprogramming during early phases. Instead, in a systematic functional surface marker screen we find that early reprogramming-prone cells express a unique set of surface markers, including CD73, CD49d and CD200 that are absent in fibroblasts and iPS cells. Single cell mass cytometry and prospective isolation show that these distinct intermediates are transient and bridge the gap between donor cell silencing and pluripotency marker acquisition during the early, presumably stochastic reprogramming phase2. Expression profiling revealed that the transcriptional regulators Nr0b1 and Etv5 are specifically expressed in this early reprogramming state, preceding activation of key pluripotency regulators such as Rex1, Dppa2, Nanog and Sox2. Both factors are required for the generation of the early intermediate state and fully reprogrammed iPS cells, and thus mark some of the earliest known regulators of iPS cell induction. Our study shows an ordered sequence of transitions during the earliest steps of iPS cell reprogramming that deconvolutes the first steps in a hierarchical series of events that lead to pluripotency acquisition. Samples for poised (CD73+ or CD49d+) and non-poised (CD73-) reprogramming samples were FACS sorted 6 and 9 days after induction of Klf4, Oct4, Sox2 and cMyc in Rosa-rtTA +/- mouse embryonic fibroblasts (MEFs). 'Total' populations are expression analyses for unsorted populations analyzed at the same time points. Control populations were also sampled: mouse embryonic fibroblasts (MEFs), partially reprogrammed cells (SC4) and mouse embryonic stem cell (ESC).