Indole Negatively Impacts Predation by Bdellovibrio bacteriovorus HD100 and Its Release from the Bdelloplast
Ontology highlight
ABSTRACT: Bdellovibrio bacteriovorus HD100 is a predatory bacterium which attacks a wide range of gram negative bacterial pathogens and is proposed to be a potential living antibiotic. In the current study, we evaluated the effects of indole, a bacterial signaling molecule commonly produced within the gut, on the predatory ability of B. bacteriovorus HD100. Indole significantly delayed predation on E. coli MG1655 and S. enterica KACC 11595 at physiological concentrations (0.25 to 1 mM) and completely inhibited predation when present at 2 mM. Microscopic analysis revealed that indole blocked the predator from attacking the prey. Furthermore, indole was not toxic to the predator but slowed down its motility. Microarray and RT-qPCR analyses confirmed this as the gene group showing the greatest down-regulation in the presence of 1 and 2 mM indole was flagellar assembly and motility genes. Aside from this group, indole also caused a wide spectrum changes in gene expression including the general down-regulation of genes involved in ribosome assembly and RNA translation. Furthermore, indole addition to the predatory culture after the entrance of B. bacteriovorus into the prey periplasm slowed down bdelloplast lysis. In conclusion, indole is an important gut-related signaling molecule that can have significant impacts on the predation efficiency and predator behavior. These findings should be taken into consideration especially if B. bacteriovorus is to be applied as a probiotic or living antibiotic. Bdellovibrio bacteriovorus HD100 was incubated for 30 min at 30°C in HEPES buffer supplemented with 0,1, and 2 mM indole. RNA was then extracted from each sample and purified. 100 ng of RNA from each sample were used for microarray experiment. For zero and 1 mM indole treatments, three independant samples were tested while for 2 mM indole treatment, two samples were tested. A total of 8 arrays were used.
ORGANISM(S): Bdellovibrio bacteriovorus HD100
SUBMITTER: Robert Mitchell
PROVIDER: E-GEOD-52455 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA