Predator-prey interactions between bacteria and the nematode Caenorhabditis elegans via interkingdom signaling molecule indole
Ontology highlight
ABSTRACT: Indole is an intercellular and interkingdom signaling molecule, which is widespread in diverse ecological niches. Caenorhabditis elegans is a bacterivorous nematode living in soil and compost environments and a useful model host for the study of host-microbe interactions. While various bacteria and some plants produce a large quantity of extracellular indole, little is known about the effects of indole, its derivatives, and indole-producing bacteria on behaviors in C. elegans and animals. Here, we show that C. elegans senses and moves toward indole and indole-producing bacteria, such as Escherichia coli, Shigella boydii, Providencia stuartii, and Klebsiella oxytoca, while avoids non-indole producing pathogenic bacteria. It was also found that indole-producing bacteria and non-indole-producing bacteria exert divergent effects on egg-laying behavior of C. elegans via indole. In addition, various indole derivatives also modulate chemotaxis, egg-laying behavior, and survival of C. elegans. In contrast, indole at a high concentration to kill C. elegans that has the ability to detoxify indole via oxidation and glucosylation, indicating predator-prey interactions via a double-edged molecule indole. Transcriptional analysis showed that indole markedly up-regulated gene expression of cytochrome P450 family, UDP-glucuronosyltransferase, glutathione S-transferase, which explained well the modification of indole in C. elegans, while down-regulated expression of collagen genes and F-box genes. Our findings suggest that indole and its derivatives are important interkingdom signaling molecules in bacteria-nematode interactions.
ORGANISM(S): Caenorhabditis elegans
PROVIDER: GSE86312 | GEO | 2019/08/31
REPOSITORIES: GEO
ACCESS DATA