Project description:Paper abstract: The transcription factors Abrupt (Ab) and Knot (Kn) act as selectors of distinct dendritic arbor morphologies in two classes of Drosophila sensory neurons, termed class I and class IV, respectively. We performed binding-site mapping and transcriptional profiling of isolated these neurons. Their profiles were similarly enriched in cell-type-specific enhancers of genes implicated in neural development. We identified a total of 429 target genes, of which 56 were common to Ab and Kn; these targets included genes necessary to shape dendritic arbors in either or both of the two sensory subtypes. Furthermore, a common target gene, encoding the cell adhesion molecule Ten-m, was expressed more strongly in class I than IV, and this differential was critical to the class-selective directional control of dendritic branch sprouting or extension. Our analyses illustrate how differentiating neurons employ distinct and shared repertoires of gene expression to produce class-selective morphological traits. Each Dam-fusion-derived sample is compared to a control Dam-only sample. Four biological replicates were performed.
Project description:Genome-wide identification of the binding sites of the Drosophila transcription factors Achaete, Asense, E(spl)m3-HLH and Senseless in wing imaginal cells using DamID profiling. Each Dam-fusion-derived sample is compared to a control Dam-only sample. Two biological replicates were performed for sca-Asense, neur-Asense, sca-Achaete, neur-Achaete, neur-Sens and sca-E(spl)m3-HLH.
Project description:Paper abstract: Neural stem cells must strike a balance between self-renewal and multipotency, and differentiation. Identification of the transcriptional networks regulating stem cell division is an essential step in understanding how this balance is achieved. We have shown that the homeodomain transcription factor, Prospero, acts to repress self-renewal and promote differentiation. Amongst its targets are three neural stem cell transcription factors, Asense, Deadpan and Snail, of which Asense and Deadpan are repressed by Prospero. Here we identify the targets of these three factors throughout the genome. We find a large overlap in their target genes, and indeed with the targets of Prospero, with 245 genomic loci bound by all factors. Many of the genes have been implicated in vertebrate stem cell self-renewal, suggesting that this core set of genes is crucial in the switch between self-renewal and differentiation. We also show that multiply bound loci are enriched for genes previously linked to nervous system phenotypes, thereby providing a short-cut to identifying genes important for nervous system development. Each Dam-fusion-derived sample is compared to a control Dam-only sample. Four biological replicates were performed for Prospero (with 2 dye-swaps). For Asense, Deadpan and Snail, two biological replicates were performed.
Project description:Regulation of gene expression is highly conserved between vertebrates, yet the genomic binding patterns of transcription factors are poorly conserved, suggesting that other mechanisms may contribute. The spatial organization of chromosomes in the nucleus is known to affect gene activity, but it is unclear to what extent this organization is conserved in evolution. Genome-wide maps of nuclear lamina (NL) interactions show that human and mouse chromosomes have highly similar folding patterns inside the nucleus. Breaks in synteny are often located at transition points between NL interacting and intra-nuclear regions. Data were compared against data from Peric-Hupkes, Meuleman et al. (Molecular Cell, 2010). LaminB1-chromatin interactions were assayed in human ESCs and human HT1080 cells. LaminA-chromatin interactions were assayed in human HT1080 cells. For the all samples there were 2 biological replicates, that were hybridized in a dye-swap design.
Project description:The nuclear lamina (NL) interacts with hundreds of large genomic regions termed lamina-associated domains (LADs). The dynamics of these interactions and the relation to epigenetic modifications are poorly understood. We visualized the fate of LADs in single cells using a novel 'molecular contact memory' approach. In each interphase nucleus, only ~30% of LADs are positioned at the periphery; these LADs are in intermittent molecular contact with the NL but remain constrained to the periphery. Upon mitosis, LAD positioning is not detectably inherited but instead is stochastically reshuffled. Contact of individual LADs with the NL correlates with their degree of H3K9 dimethylation in single cells, and inactivation of the H3K9 methyltransferase G9a reduces the NL contact frequencies. These results indicate that nuclear positioning and histone modification of LADs are both stochastic yet linked in single cells. Collectively, these results highlight principles of the dynamic spatial architecture of chromosomes. LaminB1-chromatin interactions were assayed in human HT1080 cells by induction of Dam_LMNB1 expression in a stable cell line with shield1.
Project description:The three-dimensional organization of chromosomes within the nucleus and its dynamics during differentiation are largely unknown. We present a genome-wide analysis of the interactions between chromatin and the nuclear lamina during differentiation of mouse embryonic stem cells (ESCs) into lineage-committed neural precursor cells (NPCs) and terminally differentiated astrocytes. Chromatin in each of these cell types shows a similar organization into large lamina associated domains (LADs), which represent a transcriptionally repressive environment. During sequential differentiation steps, lamina interactions are progressively modified at hundreds of genomic locations. This remodeling is typically confined to individual transcription units and involves many genes that determine cellular identity. From ESCs to NPCs, the majority of genes that move away from the lamina are concomitantly activated. Strikingly, a significant amount remain inactive yet become primed for activation by further differentiation. These results suggest that lamina-genome interactions are widely involved in the control of gene expression programs during lineage commitment and terminal differentiation. laminB1-chromatin interactions were assayed in 4 different mouse cell-types. For each cell-type there were 2 biological replicates, that were hybridized in a dye-swap design.
Project description:The nuclear lamina (NL) is a filamentous layer lining the inner-nuclear-membrane (INM) that aids in the organization of the genome in large domains of low transcriptional activity. Recently, it was shown that the single-cell genome-NL interactions are much more dynamic than previously anticipated, which challenges the concept of the NL as a safe guard for transcriptional repressed genes. Here we discuss the role of the NL in light of these new findings and introduce Lamin A and BAF as potential modulators of LAD positioning BAF-chromatin and Lamin B2-chromatin interactions were assayed in human HT1080 by DamID on Nimblegen microarrays, with two biological replicates each, that were hybridized in a dye-swap design.
Project description:Trisomy 21 (T21) is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in T21, and to eliminate the noise of the genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for T21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either up- or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twinsM-bM-^@M-^Y fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of DS and wild-type, also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall LADs position was not altered in trisomic cells. However, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results suggest that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome and that GEDDs may therefore contribute to some T21 phenotypes. LaminB1-chromatin interactions in a pair of monozygotic twins discordant for trisomy21