Expression data from isolated terminal end buds in mammary glands with or without Ovol2 deletion
Ontology highlight
ABSTRACT: Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition or EMT). Recent studies suggest that EMT endows differentiated epithelial cells with stem cell traits, posing the interesting question of how epithelial plasticity is properly restricted to ensure epithelial differentiation during tissue morphogenesis. Here we identify zinc-finger transcription factor Ovol2 as a key suppressor of EMT of mammary epithelial cells. Epithelia-specific deletion of Ovol2 completely arrests mammary ductal morphogenesis, and depletes epithelial stem/progenitor cell reservoirs. Further, Ovol2-deficient epithelial cells undergo EMT in vivo to become non-epithelial cell types, and that Ovol2 directly represses key EMT inducers such as Zeb1 and regulates stem/progenitor cell responsiveness to TGF-beta. We also provide evidence for a suppressive role of Ovol2 in breast cancer progression. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity to balance stemness with epithelial differentiation in development and cancer. TEBs from control and conditional Ovol2-knockout mammary glands were physically isolated for RNA extraction and hybridization on Affymetrix microarrays. In order to identify primary changes, we analyzed TEBs from 24-25-day-old mice, when morphological differences between control and Ovol2 SSKO were still minimal.
ORGANISM(S): Mus musculus
SUBMITTER: Kazuhide Watanabe
PROVIDER: E-GEOD-53923 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA