Identification of Ovol2 binding regions in HC11 cells
Ontology highlight
ABSTRACT: Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition or EMT). Recent studies suggest that EMT endows differentiated epithelial cells with stem cell traits, posing the interesting question of how epithelial plasticity is properly restricted to ensure epithelial differentiation during tissue morphogenesis. Here we identify zinc-finger transcription factor Ovol2 as a key suppressor of EMT of mammary epithelial cells. Epithelia-specific deletion of Ovol2 completely arrests mammary ductal morphogenesis, and depletes epithelial stem/progenitor cell reservoirs. Further, Ovol2-deficient epithelial cells undergo EMT in vivo to become non-epithelial cell types, and that Ovol2 directly represses key EMT inducers such as Zeb1 and regulates stem/progenitor cell responsiveness to TGF-beta. We also provide evidence for a suppressive role of Ovol2 in breast cancer progression. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity to balance stemness with epithelial differentiation in development and cancer. We report ChIPseq data illustrating Ovol2 genome-wide targets in mouse mammary epithelial cells, suggesting that Ovol2 regulates a plethora of genes associated with the EMT process. Immunoprecipitated samples from HC11 mouse mammary epithelial cells with antibodies against Ovol2 and control IgG respectively were used for ChIP-seq experiments.
ORGANISM(S): Mus musculus
SUBMITTER: Kazuhide Watanabe
PROVIDER: E-GEOD-53925 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA