The distinct transcription patterns correlate with the differential growth responses to salt stress in maize roots
Ontology highlight
ABSTRACT: We found that primary root (PR) is more resistant to salt stress compared with crown roots (CR) and seminal roots (SR). To understand better salt stress responses in maize roots, six RNA libraries were generated and sequenced from primary root (PR), primary roots under salt stress (PR-salt) , seminal roots (SR), seminal roots under salt stress (SR-salt), crown roots (CR), and crown roots under salt stress (CR-salt). Through integrative analysis, we identified 444 genes regulated by salt stress in maize roots, and found that the expression patterns of some genes and enzymes involved in important pathway under salt stress, such as reactive oxygen species scavenging, plant hormone signal perception and transduction, and compatible solutes synthesis differed dramatically in different maize roots. 16 of differentially expressed genes were selected for further validation with quantitative real time RT-PCR (qRT-PCR).We demonstrate that the expression patterns of differentially expressed genes are highly diversified in different maize roots. The differentially expressed genes are correlated with the differential growth responses to salt stress in maize roots. Our studies provide deeper insight into the molecular mechanisms about the differential growth responses of different root types in response to environmental stimuli in planta. Examination of three root types of maize under salt treatment for understanding the different responding mechenism to salt stress.
ORGANISM(S): Zea mays
SUBMITTER: Maolin Zhang
PROVIDER: E-GEOD-53995 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA