RNA-seq analysis of diabetes induced changes in macrophage transcriptome
Ontology highlight
ABSTRACT: Macrophage dysfunction and polarization plays key role in chronic inflammation associated with diabetes and its complications. However, the effect of diabetes on macrophage transcriptome including long non-coding RNAs is not known. Here, we analyzed global changes in transcriptome of bone marrow macrophages isolated from type 2 diabetic db/db mice and control littermates db/+ mice using high throughput RNA-seq technique. Data analysis showed that expression of genes relevant to fibrosis, cell adhesion and inflammation were altered in diabetic db/db mice relative to control db/+ mice. Furthermore, expression of several known and novel long non coding RNAs and nearby genes was altered in db/db mice. Gene ontology and IPA showed activation of signaling netwroks relevant to fibrosis, cell adhesion and inflammatory pathways . This study for the first time demonstrated that diabetes profoundly affects macrophage transcriptome including expression of long non coding RNAs and altered the levels of genes relevant to diabetes complications. Bone marrow macrophages were isolated from 12 weeks old type 2 diabetic male db/db mice and control littermates db/+ mice. These were differentiated in culture for 7-8 days in the presence of 10 ng/ml of MCSF-1 (BMMC) or 20 ng/ml of GM-CSF (BMGM). Then RNA was extracted and used for RNA-seq.
ORGANISM(S): Mus musculus
SUBMITTER: Nancy Chen
PROVIDER: E-GEOD-54154 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA