Angiogenin Released from ABCB5+ Stromal Precursors Improves Healing of Diabetic Wounds by Promoting Angiogenesis
Ontology highlight
ABSTRACT: Severe angiopathy is a major driver for diabetes associated secondary complications. Knowledge on underlying mechanisms essential for advanced therapies to attenuate these pathologies is limited. Injection of ABCB5+ stromal precursors (SPs) at the edge of non-healing diabetic wounds in a murine db/db model, closely mirroring human type II diabetes, profoundly accelerates wound closure. Strikingly, enhanced angiogenesis was substantially enforced by the release of the ribonuclease angiogenin from ABCB5+ SPs. This compensates for the profoundly reduced angiogenin expression in non-treated murine and human chronic diabetic wounds. Silencing of angiogenin in ABCB5+ SPs prior to injection significantly reduced angiogenesis, reduced numbers of M2 macrophages and delayed wound closure in diabetic db/db mice implying an unprecedented key role for angiogenin in tissue regeneration in diabetes. These data hold significant promise for further refining SPs-based therapies of non-healing diabetic foot ulcers and other pathologies with impaired angiogenesis.
ORGANISM(S): Mus musculus Homo sapiens
PROVIDER: GSE181881 | GEO | 2021/08/12
REPOSITORIES: GEO
ACCESS DATA