Project description:Hippo signaling is highly associated with activity in the stem cell compartment of many epithelial tissues. In this study, we examined if Hippo signaling inhibition (by inducing Yap expression) could convert differentiated cells into a progenitor like phenotype. Organoid cells derived from mouse livers under various conditions, wild-type, Yap ON (Plus Dox), and Yap ON then OFF (Minus Dox) was examined. Comparison between freshly isolated hepatocytes; Uninduced_YPF-#.cel against Organoids grown in wild-type conditions (WT), Yap On (in vivo) off (in vitro) - YapOrganoidDoxMinus , and Yap On continuously - YapOrganoidDoxPlus. Organoids grown in culture or YFP+ sorted liver cells after the indicated time of Yap expression were collected. These were amplified using Nugene technology and hybridized to Affymetrix MoGene1.0 st arrays.
Project description:Hippo signaling is highly associated with activity in the stem cell compartment of many epithelial tissues. In this study, we examined if Hippo signaling inhibition (by inducing Yap expression) could convert differentiated cells into a progenitor like phenotype. Rosa26-lsl-YFP mice had recombination induced and cells were FACS sorted using YFP as a marker at either 1 week or 6 weeks after recombination. YFP expression is a surrogate for Yap expression (our protein of interest) and time was varied in vivo. RNA was immediately extracted after sorting and labeled to be hybridized to the array. FACS sorted Yap expressing liver cells were sorted one or six weeks after induction and compared to fetal liver samples as controls The control data from fetal liver samples have been previously published and is available in the GEO database as GSE12117 (GSM305568, GSM305569, GSM305570). The complete dataset representing: Yap Expressiong Liver samples and the fetal liver control Samples from Series GSE12117 (re-processed in this study), is linked below as a supplementary file.
Project description:Background—YAP, the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEAD sequence specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined. Methods and Results—To identify genes directly regulated by YAP in cardiomyocytes, we combined differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb, encoding p110β, a catalytic subunit of phosphoinositol-3-kinase (PI3K), as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. We validated YAP and TEAD occupancy of a conserved enhancer within the first intron of Pik3cb, and show that this enhancer drives YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the PI3K-Akt pathway. Like Yap, Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened the YAP mitogenic activity. Reciprocally, Yap loss-of-function impaired heart function and reduced cardiomyocyte proliferation and survival, all of which were significantly rescued by AAV-mediated Pik3cb expression. Conclusion—Pik3cb is a crucial direct target of YAP, through which the YAP activates PI3K-AKT pathway and regulates cardiomyocyte proliferation and survival. Two groups were involved in this study:TNTcreYapfl_het group and TNTcreYapfl_KO group. Each group contained three biological replicates. Embryo hearts were collected at E12.5 and dissociated. Cardiomyocytes were collected by FACS. The total RNA of cardiomyocytes were isolated for microarray analysis.
Project description:We aimed to identify microRNAs that are regulated by YAP in human mammary epithelial cells. We utilized deep sequencing technology to identify microRNAs that are induced by YAP overexpression and repressed by YAP knockdown.
Project description:The Hippo-signaling pathway is an important regulator of cellular proliferation and organ size. However, little is known about the role of this cascade in the control of cell fate. Employing a combination of lineage tracing, clonal analysis, and organoid culture approaches, we demonstrate that Hippo pathway activity is essential for the maintenance of the differentiated hepatocyte state. Remarkably, acute inactivation of Hippo pathway signaling in vivo is sufficient to dedifferentiate, at very high efficiencies, adult hepatocytes into cells bearing progenitor characteristics. These hepatocyte-derived progenitor cells demonstrate self-renewal and engraftment capacity at the single-cell level. We also identify the NOTCH-signaling pathway as a functional important effector downstream of the Hippo transducer YAP. Our findings uncover a potent role for Hippo/YAP signaling in controlling liver cell fate and reveal an unprecedented level of phenotypic plasticity in mature hepatocytes, which has implications for the understanding and manipulation of liver regeneration.
Project description:The Hippo pathway effector YAP1 controls stem cell fate in epithelial tissues, but its role in stem cells of non-epithelial tissues, such as skeletal muscle, is poorly documented. Here we show that sustained YAP1 activity in mouse activated satellite cells in vivo induces rhabdomyosarcoma (RMS) resembling human embryonal RMS (ERMS) with high penetrance and short latency. The transcriptional program of YAP1 in ERMS drives pro-proliferative pathways whilst decreasing MyoD1 and MEF2 pro-differentiation activity to globally maintain the myoblastic phenotype of ERMS. Normalization of YAP1 expression reduced tumor burden and allowed myogenic differentiation of YAP1-driven and RD ERMS xenografts in situ, thereby identifying YAP1 as a potent RMS-causing oncogene and potential target for differentiation therapy. A total of four samples were analyzed. Two ChIP-Seq datasets from RD human cells, containing reads connected to TEAD binding and IgG binding as control/background; two ChIP-Seq datasets from YAP-ERMS mouse cells, containing reads connected to TEAD binding and Input reads as control/background