Project description:To advance understanding of mechanisms leading to biological and transcriptional endpoints related to estrogen action in the mouse uterus, we have mapped ERM-NM-1 and RNA polymerase II binding sites using chromatin immunoprecipitation (ChIP) followed by sequencing of enriched chromatin fragments (ChIP-seq). In the absence of hormone, 5184 ERM-NM-1 binding sites were apparent in the vehicle treated ovariectomized uterine chromatin, while 17240 were seen one hour after estrogen (E2) treatment, indicating that some sites are occupied by unliganded ERM-NM-1, and that ERM-NM-1 binding is increased by E2. Approximately 15% of the uterine ERM-NM-1 binding sites were adjacent to (<10 KB) annotated transcription start sites and many sites are found within genes or are found more than 100 KB distal from mapped genes; however, the density (sites per bp) of ERM-NM-1 binding sites is significantly greater adjacent to promoters. An increase in quantity of sites but no significant positional differences were seen between vehicle and E2 treated samples in the overall locations of ERM-NM-1 binding sites either distal from, adjacent to or within genes. Analysis of the PolII data revealed the presence of poised promoter proximal PolII on some highly upregulated genes. Additionally, co-recruitment of PolII and ERM-NM-1 to some distal enhancer regions was observed. A de novo motif analysis of sequences in the ERM-NM-1 bound chromatin confirmed that estrogen response elements (EREs) were significantly enriched. Interestingly, in areas of ERM-NM-1 binding without predicted ERE motifs, homeodomain transcription factor (Hox) binding motifs were significantly enriched. The integration of the ERM-NM-1 and PolII binding sites from our uterine ChIP-seq data with transcriptional responses revealed in our uterine microarrays has the potential to greatly enhance our understanding of mechanisms governing estrogen response in uterine and other estrogen target tissues. one sample each, vehicle ER-alpha ChIP seq,1 hour estradiol ER-alpha ChIP seq, vehicle RNA polymerase II ChIP seq,1 hour estradiol RNA polymerase II ChIP seq, input DNA
Project description:ChIP-seq from mice with DNA binding mutations in Esr1 (KIKO mouse). Estrogen Receptor M-NM-1 (ERM-NM-1) interacts with DNA, directly, or indirectly via other transcription factors, referred to as M-bM-^@M-^\tetheringM-bM-^@M-^]. Evidence for tethering is based on in vitro studies and a widely used M-bM-^@M-^\KIKOM-bM-^@M-^] mouse model containing mutations that prevent direct estrogen response element (ERE) DNA-binding. KIKO mice are infertile, due in part to the inability of estrogen (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4, and of Klf15, a progesterone (P4) target gene that opposes KLF4M-bM-^@M-^Ys pro-proliferative activity, were evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine ChIP-seq revealed enrichment of KIKO ERM-NM-1 binding to hormone response elements (HRE), motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERM-NM-1 has HRE DNA-binding activity, we evaluated the M-bM-^@M-^\EAAEM-bM-^@M-^] ERM-NM-1, which has more severe DBD mutations, and demonstrated lack of ERE or HRE reporter gene induction or DNA binding. The EAAE mouse has an ERM-NM-1-null like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERM-NM-1 tethering, as KIKO ERM-NM-1 effectively stimulates transcription using HRE motifs. The EAAE-ERM-NM-1 DBD mutant mouse demonstrates that ERM-NM-1 DNA-binding is crucial for biological and transcriptional processes in reproductive tissues, and that ERM-NM-1-tethering may not contribute to estrogen-responsiveness in vivo. one sample each, vehicle ER-alpha ChIP seq,1 hour estradiol ER-alpha ChIP seq, vehicle RNA polymerase II ChIP seq,1 hour estradiol RNA polymerase II ChIP seq, input DNA
Project description:Many mammalian genes are occupied by paused RNA polymerase II (pol II) at promoter-proximal regions on both sides of transcription start sites (TSSs). However, the consequences of pol II pausing on gene expression and cell biology are not fully understood. Here we report that genetic ablation of the b subunit of mouse negative elongation factor (Nelf-b), a key pol II-pausing factor, results in slower progression at multiple cell cycle stages and increased apoptosis. Consistently, a whole-genome analysis indicates that growth and cell death-related genes are highly enriched among the direct target genes of Nelf-b. In particular, Nelf-b deletion increases pol II density in the promoter-distal region of stress response genes and their overall expression levels in the absence of any external stress signals. In addition, our work also reveals a previously unappreciated role of Nelf-b role in curbing TSS-upstream transcription of many mammalian genes. We suggest that Nelf-mediated pol II pausing balances the cellular needs for growth/survival and stress response by preventing excessive basal transcription of stress-induced genes. Examination of Nelf-b bindings sites on chromosomes in mouse embryonic fibroblasts
Project description:Understanding the precise functions and relationship of BRD2 with other bromodomain and extraterminal motif (BET) proteins is central for the application of BET-specific and pan inhibitors. Here, we used acute protein degradation and quantitative genomic and proteomic approaches to investigate the primary functions of BRD2 in transcription. We report that BRD2 is required for TAF3-mediated Pol II initiation at low levels of H3K4me3-modified promoters and Pol II elongation by suppressing R-loops. Single and double depletion revealed that BRD2 and BRD3, but not BRD4, redundantly and independently function in Pol II transcription at different promoters and cooperatively occupy enhancers. Interestingly, we found that depletion of BRD2 affects the expression of different genes during differentiation processes, priming with promoter regulation in ES cells. Therefore, our results suggest complex interconnections between BRD2 and BRD3 at promoters to fine-tune Pol II initiation and elongation for control of cell state.
Project description:ChIP-Seq for H3K4me3 and H3K27me3 in wild type spleens and spleens from mice having deletion of RBP-J in cells of the renin lineage, which results in B-cell leukemia. Examination of 2 different histone modifications in wild type and mutant spleens.
Project description:Using genetically engineered mice, overexpressing SRC-2, specifically in the prostate epithelium of PTEN heterozygous mice accelerates PTEN mutation induce tumor progression and develops a metastasis-prone cancer. Here we used ChIP-Seq analysis to identify genome-wide SRC-2 binding sites in mouse prostate. Examination of genome-wide SRC-2 binding in mouse prostate by ChIP-seq analysis. Samples were collected from pooled dorsal-lateral prostates of 7 months old-PTEN flox/+; Rosa26-SRC-2 OE/+ mice. Flash frozen tissues were then sent to Active Motif, Inc. for chromatin extraction and followed by immunoprecipitation using anti-SRC-2 antibody (A300-346A, Bethyl Lab., Inc.).
Project description:Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with Squamous Cell Carcinoma has identified SMAD4 to be frequently mutated. Here we used a novel mouse model to determine the molecular mechanisms regulated by loss of Smad4 which lead to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium developed metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determined that loss of PTEN and SMAD4 resulted in activation of the ELF3 and the ErbB2 pathway due to decreased ERRFI1M-bM-^@M-^Ys expression, a negative regulator of ERBB2 in mice and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuated tumor progression and cell invasion, respectively. Expression profiles analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both prognostic biomarkers and therapeutic drug targets for treating lung cancer. Examination of genome-wide SMAD4 binding in 7-month-old Ptend/d mouse lung.
Project description:Cells have developed effective mechanisms, namely homologous recombination (HR) and non-homologous end-joining (NHEJ), to repair DNA double-strand breaks (DSBs), which are considered to be the most deleterious type of damage that can challenge genome integrity. While these pathways coexist to repair DSBs, the mechanisms by which one of these pathways is chosen to repair a particular DSB remain unclear. Here, we show that the chromatin context in which a break occurs participates in this choice and that transcriptionnaly active chromatin channels repair to HR. By using a human cell line expressing a restriction enzyme fused to the ligand binding domain of the oestrogen receptor (AsiSI-ER)2,3, together with a genome wide chromatin immunoprecipitation-sequencing (ChIP-seq) approach, we establish that distinct DSBs induced across the genome are not necessarily repaired by the same pathway. Indeed, we identify an HR-prone subset of DSBs that recruit the HR protein RAD51, undergo resection, and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes, and repair at such DSBs can be switched to RAD51-independent repair pathway upon transcriptional inhibition. Moreover, we show that HR is targeted to transcribed loci thanks to the elongation-associated H3K36me3 histone mark. Indeed depletion of HYPB, the main H3K36 tri methyltransferase severally impedes the use of HR at those DSBs. Our study, thereby demonstrates a clear role for chromatin in DSB repair pathway choice in human cells.