A natural expression variant reveals a novel mechanism of insect resistance in boreal forest trees.
Ontology highlight
ABSTRACT: We report the discovery of a beta-glucosidase gene (PgM-NM-2glu-1) whose expression underpins natural resistance to a major forest pest, the spruce budworm (SBW) in white spruce (Picea glauca (Voss.) Moench). We performed a microarray experiment to compare resistant (R) and non-resistant (N-R) trees. PgM-NM-2glu-1 transcripts levels uniquely were up to 1000 times higher in phenotypically resistant trees and correlated with accumulation of acetophenones compounds that reduce SBW development. These resistance traits were heritable, temporally correlated with the emergence of the most damaging larval stages and were highly variable in the natural population across a large geographic area. The recombinant gene product specifically catalyzed the release of biologically active acetophenones from their glucoside precursors. SBW outbreaks have become more frequent and intense; therefore, the phenotypic diversity resulting from variation in PgM-NM-2glu-1 expression may be a key for the adaptability of spruce populations. Transcriptome profiling was carried out with needles from 7 resistant and 7 non-resistant trees (harvested on June 17th, 2010), and 3 samples per tree (n=42) with a custom microarray developed for spruce species and comprising oligonucleotide probes for 23,853 unique P. glauca gene sequences (Raherison et al., 2012).
ORGANISM(S): Picea glauca
SUBMITTER: Isabelle Giguere
PROVIDER: E-GEOD-57301 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA