Characterizing the Chemoresistant Ovarian Cancer Population using the Heterogeneous PDX
Ontology highlight
ABSTRACT: The patient-derived xenograft (PDX) model retains the heterogeneity of patient tumors, allowing a means to not only examine efficacy of a therapy across a population, but also study crucial aspects of cancer biology in response to treatment. Herein we describe the development and characterization of an ovarian-PDX model in order to study the development of chemoresistance. We demonstrate that PDX tumors are not simply composed of tumor-initiating cells, but recapitulate the original tumor’s heterogeneity, oncogene expression profiles, and clinical response to chemotherapy. Combined carboplatin/paclitaxel treatment of PDX tumors enriches the cancer stem cell populations, but persistent tumors are not entirely composed of these populations. RNA-Seq analysis of treated PDX tumors compared to untreated tumors demonstrates a consistently contrasting genetic profile after therapy, suggesting similar, but few, pathways are mediating chemoresistance. The pathways most significantly altered included Protein Kinase A signaling, GNRH signaling, and sphingosine-1-phosphate signaling. Pathways and genes identified by this methodology represent novel approaches to targeting the chemoresistant population in ovarian cancer 6 pairs of Patient-Derived Xenografts (PDX) were ananlyzed using RNA-seq for a total of 12 samples. Each pair consists of a treated and untreated PDX of ovarian cancer. Treated Ovarian cancer PDXs were treated with 4 weeks of a combination of carboplatin and taxol. RNA was isolated and converted to cDNA. RNA-seq was conductred on the Illumina HiSeq 2000 with 50 bp paired end sequencing
ORGANISM(S): Homo sapiens
SUBMITTER: Charles Landen
PROVIDER: E-GEOD-58586 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA