Asymmetric nucleosomes flank promoters in the budding yeast genome
Ontology highlight
ABSTRACT: Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that nucleosomes at 5% of budding yeast nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling. We have analyzed the chromatin landscape of the yeast genome using paired-end MNase-seq and the chromatin binding of yeast remodelers Swr1, Ino80 and RSC at base-pair resolution using native chromatin immunoprecipitation followed by sequencing (N-ChIP-seq).
ORGANISM(S): Saccharomyces cerevisiae
SUBMITTER: Jorja Henikoff
PROVIDER: E-GEOD-59523 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA