Project description:This SuperSeries is composed of the following subset Series: GSE24446: Genetic abnormalities in GBM brain tumors GSE24452: Genetic abnormalities in various cell subpopulations of GBM brain tumors GSE24557: Exon-level expression profiles of GBM brain tumors Refer to individual Series
Project description:Examine the genetic abnormality in brain tumors Genomic DNA were extracted from frozen brain tumor samples and CGH assay were performed to compare the similarity genomic abnormality among different cell groups.
Project description:Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors. Despite radical surgery and radiotherapy supported by chemotherapy, the disease still remains incurable with extremely low median survival rate of 12-15 months from the time of initial diagnosis. The main cause of treatment failure is considered to be the presence of cells that are resistant to such treatment. MicroRNAs (miRNAs) as regulators of gene expression are involved in the tumor pathogenesis, including GBM. MiR-338 is a brain specific miRNA which has been described to target pathways involved in proliferation and differentiation. In our study, miR-338-3p and -5p were differentially expressed in GBM tissue in comparison to non-tumor brain tissue. Overexpression of miR-338-3p with miRNA mimic did not show any changes in proliferation rates in GBM cell lines (A172, T98G, U87MG). On the other hand, pre-miR-338-5p notably decreased proliferation and caused cell cycle arrest. Since radiation is currently the main treatment modality in GBM, we combined overexpression of pre-miR-338-5p with radiation, which led to significantly decreased of cell proliferation, and increased cell cycle arrest and apoptosis in comparison to only irradiated cells. To better elucidate the mechanism of action, we performed gene expression profiling analysis that revealed targets of miR-338-5p being Ndfip1, Rheb, ppp2R5a. These genes have been described to be involved in DNA damage response, proliferation and cell cycle regulation. To our knowledge, this is the first study to describe role of miR-338-5p in GBM and its potential to improve sensitivity of GBM to radiation. Study was performed on three glioblastoma multiforme cell lines A172, T98G and U87MG. This experiment was performed on Affymetrix GeneChip Human Gene ST 1.0 to elucidate the targets of miRNA-338-5p. Cell lines were seeded 24 hours prior transfection. After transfection with pre-miR338-5p or negative control cell were cultured for 24 hours and harvested. RNA was isolated using MirVana miRNA Isolation Kit (Ambion, USA) and checked for RNA integrity by Bioanalyzer 2100 and purity by ratios 260/280>1.8 and 260/230>1.8 by Nanodrop2000.
Project description:We screened the gene expression in GBM cell lines cultured under serum-free conditions. We have special interest in genes associated with glial development such as NG2, Olig2 and PDGFRa. This microarray data gave us an idea about the expression of these genes and made the basis for further investigation. Seven GBM cells were derived from 7 different patients under serum-free conditions according to Cambridge protocol as previously described (Fael Al-Mayhani et al, 2009). The RNA was extracted and its quality was assessed. The samples were sent for microarray screening using Illumina platform. The gene was considered as present when the detection value was greater than 0.99.
Project description:Genomic DNA extracted from tumor samples were profiled on Agilent Human 1X1M aCGH Array Profiling copy number changes of GBM samples
Project description:Glioblastomas (GBM) are poorly differentiated astrocytic tumors arising in the Central Nervous System (CNS), which despite aggressive treatments are still characterized by a fatal outcome. Several studies have shown the existence of a subpopulation of cells within glioma tumors displaying cancer stem cells properties. As the term âtumor initiating cellsâ (TICs) is frequentely used to describe cells as these with cancer stem cells capacity. Because TICs promotes the tumor chemo- and radio-resistance and angiogenesis it is conceivable that finding a mean to kill these cells would lead to a better therapy for GBM. The NOTCH gene has an important role during the CNS development, in the maintenance of dividing cells in promoting neural lineage entry of Embryonic Stem Cells and the differentiation of astroglia from the rat adult hippocampus-derived multipotent progenitors. The activation of the NOTCH signaling requires the proteolytic processing of this type I integral membrane protein by a two step process catalyzed first by a metalloprotease and then by the gamma-secretase. An increased activation of the NOTCH signaling has been implicated in several tumors types. Recently some studies showed that this pathway induces the survival/proliferation in GBM and glioma cells, and the expression of stem cell properties in glioma cells. Accordingly to these findings, the inhibition of this pathway leads to depletion of stem-like cells and blocks the engraftment in embryonal brain tumors. Furthermore, enhanced NOTCH signaling may lead to one of the tumor resistance mechanisms deployed by GBM. Targeting the NOTCH pathway specifically in GBM TICs appears therefore as a rational approach for exploring novel and hopefully more effective therapeutic strategies for the management of this malignancy. Several molecular tools are available for targeting the Notch pathway such as specific siRNAs, shRNAs or drugs such as gamma-secretase inhibitors. Among these tools, the latter are small peptides/molecules able to inhibit the gamma-secretase by distinct mechanisms. In this study we used two drugs known as gamma-secretase inhibitors, to investigate by gene expression profiling, their ability to interfere specifically with the proliferative properties of GBM TICs previously obtained in our laboratory. Our data show that one of these two drugs, LLNle, is effective in killing these cells in vitro by activating protein catabolic process mediated by the proteasome, suggesting that preclinical studies should definitely be carried on to evaluate whether LLNle is able to significantly improve the survival in hybrid human GBM-animal models. Gamma-secretase inhibitors have been proposed as drugs able to kill cancer cells by targeting the NOTCH pathway. In this study we employed two of such inhibitors, namely the z-Leu-leu-Nle-CHO (LLNle) and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), to verify whether they were effective in vitro in the killing of human GBM tumor initiating cells (TICs). We first established that of the two drugs only LLNle reduces the viability of GBM TICs obtained from three different patients in the low micromolar range. Cells were treated with 7.5 μM LLNle or DAPT or vehicle alone (DMSO 0.1%) and kept in a humidified 5% CO2 atmosphere at 37°C for the indicated time period (24 or 48 hours). To establish which cellular processes are activated in GBM TICs by LLNle we generated and analyzed the gene expression profile after treatment with this compound and with DAPT and DMSO (vehicle). Our data show that LLNle induces upregulation of genes coding for proteasome subunits and subsequently mitotic arrest in these cells by repressing genes required for DNA synthesis and mitotic progression and by activation of genes acting as mitotic inhibitors. Our data are consistent with proteasome inhibition by LLNle, subsequent upregulation of proteasome activity and subsequent unleash of the apoptotic process in GBM TICs.
Project description:GBM is a heterogenous tumor. Based on membrane protein expression, the GBM single cell dissociates were seperated into different subfractions by FACS assay. The genomic aberration among each populations were compared by analysis of CGH data. Genomic DNA were extracted from sorted cell population and CGH assay were performed to compare the similarity genomic abnormality among different cell groups.
Project description:The aim of this study is to determine if, using antioxidant drugs, it is possible to interfere with the proliferative capabilities of the human glioblastoma (GBM) tumor-initiating cells (TICs). To establish which cellular processes are activated in GBM TICs by the antioxidants NAC, Tiron and Trolox, we generated and analyzed the gene expression profiles after treatment with these compounds and with H2O and EtOH (vehicles).
Project description:Ion channels and related proteins of the ion permeome (IP) are common drug targets; however, their roles in cancer remain understudied. We performed a computational, pan-cancer analysis of druggable IP genes to prioritise targets for therapeutic and biomarker development. Two candidate biomarkers in glioblastoma (GBM), GJB2 and SCN9A, associated with poor prognosis in multiple datasets, as well as inter- and intratumoral heterogeneity and malignant cell types. We used shRNA to knock down GJB2 (G5) and SCN9A (S3) in patient-derived GBM cells (729) in triplicates and performed whole transcriptome sequencing to profile the transcriptome-wide changes. Pathway enrichment identified neural projection and proliferation pathways were significantly dysregulated in GJB2 and SCN9A GBM cell line knockdowns compared to non-targeted shRNA controls (Scr). Our study underlines altered bioelectrical signalling as a cancer hallmark and provides a catalogue of IP genes for functional experiments and therapy development.
Project description:The recent incorporation of molecular features into the diagnosis of Glioblastoma Multiforme patients has led to an improved categorisation into different tumour subtypes with different prognosis and disease management. In this work, we have exploited the benefits of genome-wide multiomic approaches to identify potential molecular vulnerabilities existing on GBM patients. We used the Illumina MethylationEPIC Beadchip platform to describe the genome-wide 5mC and 5hmC DNA methylation landscape of a total of 9 patient-derived Glioblastoma Multiforme Cell lines obtained from the human glioblastoma cell culture resource (HGCC) and 4 brain samples obtained from non-tumoral controls