Genome-wide identification and characterization of functional neuronal activity-dependent enhancers
Ontology highlight
ABSTRACT: Experience-dependent gene transcription is required for nervous system development and function. However, the DNA regulatory elements that control this program of gene expression are not well defined. Here we characterize the enhancers that function across the genome to mediate activity-dependent transcription in neurons. While ~12,000 putative activity-regulated enhancer sequences have previously been identified that are enriched for H3K4me1 and the histone acetyltransferase CBP, we find that this chromatin signature is not sufficient to distinguish which of these regulatory sequences are actively engaged in promoting activity-dependent transcription. We show here that a subset of H3K4me1/CBP positive enhancers that is enriched for H3K27 acetylation (H3K27ac) in vivo, and shows increased H3K27ac upon membrane depolarization of cortical neurons, function to regulate activity-dependent transcription. The function of many of these activity-regulated enhancers appears to be dependent on the binding of FOS, a protein that had previously been thought to interact primarily with the promoters of activity-regulated genes. Furthermore, many of these target genes in cortical neurons encode neuron specific proteins that regulate synaptic development and function. These findings suggest that FOS functions at enhancers to control activity-dependent gene programs that are critical for nervous system function, and provide a resource of activity-dependent enhancers that may give insight into genetic variation that contributes to brain development and disease. Genome-wide maps of H3K27ac and AP1 transcription factors (CFOS, FOSB, JUNB) before and after neuronal activity in mouse cortical neurons.
ORGANISM(S): Mus musculus
SUBMITTER: Athar Malik
PROVIDER: E-GEOD-60192 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA